返回介绍

solution / 0100-0199 / 0108.Convert Sorted Array to Binary Search Tree / README

发布于 2024-06-17 01:04:05 字数 7360 浏览 0 评论 0 收藏 0

108. 将有序数组转换为二叉搜索树

English Version

题目描述

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 平衡 二叉搜索树。

 

示例 1:

输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:

示例 2:

输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。

 

提示:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums严格递增 顺序排列

解法

方法一:二分 + 递归

我们设计一个递归函数 $dfs(l, r)$,表示当前待构造的二叉搜索树的节点值都在数组 nums 的下标范围 $[l, r]$ 内。该函数返回构造出的二叉搜索树的根节点。

函数 $dfs(l, r)$ 的执行流程如下:

  1. 如果 $l > r$,说明当前数组为空,返回 null
  2. 如果 $l \leq r$,取数组中下标为 $mid = \lfloor \frac{l + r}{2} \rfloor$ 的元素作为当前二叉搜索树的根节点,其中 $\lfloor x \rfloor$ 表示对 $x$ 向下取整。
  3. 递归地构造当前二叉搜索树的左子树,其根节点的值为数组中下标为 $mid - 1$ 的元素,左子树的节点值都在数组的下标范围 $[l, mid - 1]$ 内。
  4. 递归地构造当前二叉搜索树的右子树,其根节点的值为数组中下标为 $mid + 1$ 的元素,右子树的节点值都在数组的下标范围 $[mid + 1, r]$ 内。
  5. 返回当前二叉搜索树的根节点。

答案即为函数 $dfs(0, n - 1)$ 的返回值。

时间复杂度 $O(n)$,空间复杂度 $O(\log n)$。其中 $n$ 为数组 nums 的长度。

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
    def dfs(l, r):
      if l > r:
        return None
      mid = (l + r) >> 1
      left = dfs(l, mid - 1)
      right = dfs(mid + 1, r)
      return TreeNode(nums[mid], left, right)

    return dfs(0, len(nums) - 1)
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  private int[] nums;

  public TreeNode sortedArrayToBST(int[] nums) {
    this.nums = nums;
    return dfs(0, nums.length - 1);
  }

  private TreeNode dfs(int l, int r) {
    if (l > r) {
      return null;
    }
    int mid = (l + r) >> 1;
    TreeNode left = dfs(l, mid - 1);
    TreeNode right = dfs(mid + 1, r);
    return new TreeNode(nums[mid], left, right);
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  TreeNode* sortedArrayToBST(vector<int>& nums) {
    function<TreeNode*(int, int)> dfs = [&](int l, int r) -> TreeNode* {
      if (l > r) {
        return nullptr;
      }
      int mid = (l + r) >> 1;
      auto left = dfs(l, mid - 1);
      auto right = dfs(mid + 1, r);
      return new TreeNode(nums[mid], left, right);
    };
    return dfs(0, nums.size() - 1);
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func sortedArrayToBST(nums []int) *TreeNode {
  var dfs func(int, int) *TreeNode
  dfs = func(l, r int) *TreeNode {
    if l > r {
      return nil
    }
    mid := (l + r) >> 1
    left, right := dfs(l, mid-1), dfs(mid+1, r)
    return &TreeNode{nums[mid], left, right}
  }
  return dfs(0, len(nums)-1)
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function sortedArrayToBST(nums: number[]): TreeNode | null {
  const n = nums.length;
  if (n === 0) {
    return null;
  }
  const mid = n >> 1;
  return new TreeNode(
    nums[mid],
    sortedArrayToBST(nums.slice(0, mid)),
    sortedArrayToBST(nums.slice(mid + 1)),
  );
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//   TreeNode {
//     val,
//     left: None,
//     right: None
//   }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
  fn to_bst(nums: &Vec<i32>, start: usize, end: usize) -> Option<Rc<RefCell<TreeNode>>> {
    if start >= end {
      return None;
    }
    let mid = start + (end - start) / 2;
    Some(
      Rc::new(
        RefCell::new(TreeNode {
          val: nums[mid],
          left: Self::to_bst(nums, start, mid),
          right: Self::to_bst(nums, mid + 1, end),
        })
      )
    )
  }

  pub fn sorted_array_to_bst(nums: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
    Self::to_bst(&nums, 0, nums.len())
  }
}
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *   this.val = (val===undefined ? 0 : val)
 *   this.left = (left===undefined ? null : left)
 *   this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {number[]} nums
 * @return {TreeNode}
 */
var sortedArrayToBST = function (nums) {
  const dfs = (l, r) => {
    if (l > r) {
      return null;
    }
    const mid = (l + r) >> 1;
    const left = dfs(l, mid - 1);
    const right = dfs(mid + 1, r);
    return new TreeNode(nums[mid], left, right);
  };
  return dfs(0, nums.length - 1);
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文