返回介绍

solution / 1100-1199 / 1143.Longest Common Subsequence / README

发布于 2024-06-17 01:03:23 字数 6632 浏览 0 评论 0 收藏 0

1143. 最长公共子序列

English Version

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0

一个字符串的 子序列_ _是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

 

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。

 

提示:

  • 1 <= text1.length, text2.length <= 1000
  • text1 和 text2 仅由小写英文字符组成。

解法

方法一:动态规划

我们定义 $f[i][j]$ 表示 $text1$ 的前 $i$ 个字符和 $text2$ 的前 $j$ 个字符的最长公共子序列的长度。那么答案为 $f[m][n]$,其中 $m$ 和 $n$ 分别为 $text1$ 和 $text2$ 的长度。

如果 $text1$ 的第 $i$ 个字符和 $text2$ 的第 $j$ 个字符相同,则 $f[i][j] = f[i - 1][j - 1] + 1$;如果 $text1$ 的第 $i$ 个字符和 $text2$ 的第 $j$ 个字符不同,则 $f[i][j] = max(f[i - 1][j], f[i][j - 1])$。即状态转移方程为:

$$ f[i][j] = \begin{cases} f[i - 1][j - 1] + 1, & text1[i - 1] = text2[j - 1] \ \max(f[i - 1][j], f[i][j - 1]), & text1[i - 1] \neq text2[j - 1] \end{cases} $$

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别为 $text1$ 和 $text2$ 的长度。

class Solution:
  def longestCommonSubsequence(self, text1: str, text2: str) -> int:
    m, n = len(text1), len(text2)
    f = [[0] * (n + 1) for _ in range(m + 1)]
    for i in range(1, m + 1):
      for j in range(1, n + 1):
        if text1[i - 1] == text2[j - 1]:
          f[i][j] = f[i - 1][j - 1] + 1
        else:
          f[i][j] = max(f[i - 1][j], f[i][j - 1])
    return f[m][n]
class Solution {
  public int longestCommonSubsequence(String text1, String text2) {
    int m = text1.length(), n = text2.length();
    int[][] f = new int[m + 1][n + 1];
    for (int i = 1; i <= m; ++i) {
      for (int j = 1; j <= n; ++j) {
        if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
          f[i][j] = f[i - 1][j - 1] + 1;
        } else {
          f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
        }
      }
    }
    return f[m][n];
  }
}
class Solution {
public:
  int longestCommonSubsequence(string text1, string text2) {
    int m = text1.size(), n = text2.size();
    int f[m + 1][n + 1];
    memset(f, 0, sizeof f);
    for (int i = 1; i <= m; ++i) {
      for (int j = 1; j <= n; ++j) {
        if (text1[i - 1] == text2[j - 1]) {
          f[i][j] = f[i - 1][j - 1] + 1;
        } else {
          f[i][j] = max(f[i - 1][j], f[i][j - 1]);
        }
      }
    }
    return f[m][n];
  }
};
func longestCommonSubsequence(text1 string, text2 string) int {
  m, n := len(text1), len(text2)
  f := make([][]int, m+1)
  for i := range f {
    f[i] = make([]int, n+1)
  }
  for i := 1; i <= m; i++ {
    for j := 1; j <= n; j++ {
      if text1[i-1] == text2[j-1] {
        f[i][j] = f[i-1][j-1] + 1
      } else {
        f[i][j] = max(f[i-1][j], f[i][j-1])
      }
    }
  }
  return f[m][n]
}
function longestCommonSubsequence(text1: string, text2: string): number {
  const m = text1.length;
  const n = text2.length;
  const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
  for (let i = 1; i <= m; i++) {
    for (let j = 1; j <= n; j++) {
      if (text1[i - 1] === text2[j - 1]) {
        f[i][j] = f[i - 1][j - 1] + 1;
      } else {
        f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
      }
    }
  }
  return f[m][n];
}
impl Solution {
  pub fn longest_common_subsequence(text1: String, text2: String) -> i32 {
    let (m, n) = (text1.len(), text2.len());
    let (text1, text2) = (text1.as_bytes(), text2.as_bytes());
    let mut f = vec![vec![0; n + 1]; m + 1];
    for i in 1..=m {
      for j in 1..=n {
        f[i][j] = if text1[i - 1] == text2[j - 1] {
          f[i - 1][j - 1] + 1
        } else {
          f[i - 1][j].max(f[i][j - 1])
        };
      }
    }
    f[m][n]
  }
}
/**
 * @param {string} text1
 * @param {string} text2
 * @return {number}
 */
var longestCommonSubsequence = function (text1, text2) {
  const m = text1.length;
  const n = text2.length;
  const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
  for (let i = 1; i <= m; ++i) {
    for (let j = 1; j <= n; ++j) {
      if (text1[i - 1] == text2[j - 1]) {
        f[i][j] = f[i - 1][j - 1] + 1;
      } else {
        f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
      }
    }
  }
  return f[m][n];
};
public class Solution {
  public int LongestCommonSubsequence(string text1, string text2) {
    int m = text1.Length, n = text2.Length;
    int[,] f = new int[m + 1, n + 1];
    for (int i = 1; i <= m; ++i) {
      for (int j = 1; j <= n; ++j) {
        if (text1[i - 1] == text2[j - 1]) {
          f[i, j] = f[i - 1, j - 1] + 1;
        } else {
          f[i, j] = Math.Max(f[i - 1, j], f[i, j - 1]);
        }
      }
    }
    return f[m, n];
  }
}
class Solution {
  fun longestCommonSubsequence(text1: String, text2: String): Int {
    val m = text1.length
    val n = text2.length
    val f = Array(m + 1) { IntArray(n + 1) }
    for (i in 1..m) {
      for (j in 1..n) {
        if (text1[i - 1] == text2[j - 1]) {
          f[i][j] = f[i - 1][j - 1] + 1
        } else {
          f[i][j] = Math.max(f[i - 1][j], f[i][j - 1])
        }
      }
    }
    return f[m][n]
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文