返回介绍

solution / 2800-2899 / 2817.Minimum Absolute Difference Between Elements With Constraint / README

发布于 2024-06-17 01:02:59 字数 17520 浏览 0 评论 0 收藏 0

2817. 限制条件下元素之间的最小绝对差

English Version

题目描述

给你一个下标从 0 开始的整数数组 nums 和一个整数 x 。

请你找到数组中下标距离至少为 x 的两个元素的 差值绝对值 的 最小值 。

换言之,请你找到两个下标 i 和 j ,满足 abs(i - j) >= x 且 abs(nums[i] - nums[j]) 的值最小。

请你返回一个整数,表示下标距离至少为 x 的两个元素之间的差值绝对值的 最小值 。

 

示例 1:

输入:nums = [4,3,2,4], x = 2
输出:0
解释:我们选择 nums[0] = 4 和 nums[3] = 4 。
它们下标距离满足至少为 2 ,差值绝对值为最小值 0 。
0 是最优解。

示例 2:

输入:nums = [5,3,2,10,15], x = 1
输出:1
解释:我们选择 nums[1] = 3 和 nums[2] = 2 。
它们下标距离满足至少为 1 ,差值绝对值为最小值 1 。
1 是最优解。

示例 3:

输入:nums = [1,2,3,4], x = 3
输出:3
解释:我们选择 nums[0] = 1 和 nums[3] = 4 。
它们下标距离满足至少为 3 ,差值绝对值为最小值 3 。
3 是最优解。

 

提示:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 109
  • 0 <= x < nums.length

解法

方法一:有序集合

我们创建一个有序集合,用于存储距离当前下标至少为 $x$ 的元素。

接下来,我们从下标 $i = x$ 开始枚举,每次将 $nums[i - x]$ 加入到有序集合中。然后找出有序集合中与 $nums[i]$ 最接近的两个元素,它们的差值绝对值的最小值就是答案。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。

from sortedcontainers import SortedList


class Solution:
  def minAbsoluteDifference(self, nums: List[int], x: int) -> int:
    sl = SortedList()
    ans = inf
    for i in range(x, len(nums)):
      sl.add(nums[i - x])
      j = bisect_left(sl, nums[i])
      if j < len(sl):
        ans = min(ans, sl[j] - nums[i])
      if j:
        ans = min(ans, nums[i] - sl[j - 1])
    return ans
class Solution {
  public int minAbsoluteDifference(List<Integer> nums, int x) {
    TreeMap<Integer, Integer> tm = new TreeMap<>();
    int ans = 1 << 30;
    for (int i = x; i < nums.size(); ++i) {
      tm.merge(nums.get(i - x), 1, Integer::sum);
      Integer key = tm.ceilingKey(nums.get(i));
      if (key != null) {
        ans = Math.min(ans, key - nums.get(i));
      }
      key = tm.floorKey(nums.get(i));
      if (key != null) {
        ans = Math.min(ans, nums.get(i) - key);
      }
    }
    return ans;
  }
}
class Solution {
public:
  int minAbsoluteDifference(vector<int>& nums, int x) {
    int ans = 1 << 30;
    multiset<int> s;
    for (int i = x; i < nums.size(); ++i) {
      s.insert(nums[i - x]);
      auto it = s.lower_bound(nums[i]);
      if (it != s.end()) {
        ans = min(ans, *it - nums[i]);
      }
      if (it != s.begin()) {
        --it;
        ans = min(ans, nums[i] - *it);
      }
    }
    return ans;
  }
};
func minAbsoluteDifference(nums []int, x int) int {
  rbt := redblacktree.NewWithIntComparator()
  ans := 1 << 30
  for i := x; i < len(nums); i++ {
    rbt.Put(nums[i-x], nil)
    c, _ := rbt.Ceiling(nums[i])
    f, _ := rbt.Floor(nums[i])
    if c != nil {
      ans = min(ans, c.Key.(int)-nums[i])
    }
    if f != nil {
      ans = min(ans, nums[i]-f.Key.(int))
    }
  }
  return ans
}
function minAbsoluteDifference(nums: number[], x: number): number {
  const s = new TreeMultiSet<number>();
  const inf = 1 << 30;
  let ans = inf;
  for (let i = x; i < nums.length; ++i) {
    s.add(nums[i - x]);
    const c = s.ceil(nums[i]);
    const f = s.floor(nums[i]);
    if (c) {
      ans = Math.min(ans, c - nums[i]);
    }
    if (f) {
      ans = Math.min(ans, nums[i] - f);
    }
  }
  return ans;
}

type Compare<T> = (lhs: T, rhs: T) => number;

class RBTreeNode<T = number> {
  data: T;
  count: number;
  left: RBTreeNode<T> | null;
  right: RBTreeNode<T> | null;
  parent: RBTreeNode<T> | null;
  color: number;
  constructor(data: T) {
    this.data = data;
    this.left = this.right = this.parent = null;
    this.color = 0;
    this.count = 1;
  }

  sibling(): RBTreeNode<T> | null {
    if (!this.parent) return null; // sibling null if no parent
    return this.isOnLeft() ? this.parent.right : this.parent.left;
  }

  isOnLeft(): boolean {
    return this === this.parent!.left;
  }

  hasRedChild(): boolean {
    return (
      Boolean(this.left && this.left.color === 0) ||
      Boolean(this.right && this.right.color === 0)
    );
  }
}

class RBTree<T> {
  root: RBTreeNode<T> | null;
  lt: (l: T, r: T) => boolean;
  constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
    this.root = null;
    this.lt = (l: T, r: T) => compare(l, r) < 0;
  }

  rotateLeft(pt: RBTreeNode<T>): void {
    const right = pt.right!;
    pt.right = right.left;

    if (pt.right) pt.right.parent = pt;
    right.parent = pt.parent;

    if (!pt.parent) this.root = right;
    else if (pt === pt.parent.left) pt.parent.left = right;
    else pt.parent.right = right;

    right.left = pt;
    pt.parent = right;
  }

  rotateRight(pt: RBTreeNode<T>): void {
    const left = pt.left!;
    pt.left = left.right;

    if (pt.left) pt.left.parent = pt;
    left.parent = pt.parent;

    if (!pt.parent) this.root = left;
    else if (pt === pt.parent.left) pt.parent.left = left;
    else pt.parent.right = left;

    left.right = pt;
    pt.parent = left;
  }

  swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
    const tmp = p1.color;
    p1.color = p2.color;
    p2.color = tmp;
  }

  swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
    const tmp = p1.data;
    p1.data = p2.data;
    p2.data = tmp;
  }

  fixAfterInsert(pt: RBTreeNode<T>): void {
    let parent = null;
    let grandParent = null;

    while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
      parent = pt.parent;
      grandParent = pt.parent.parent;

      /*  Case : A
        Parent of pt is left child of Grand-parent of pt */
      if (parent === grandParent?.left) {
        const uncle = grandParent.right;

        /* Case : 1
           The uncle of pt is also red
           Only Recoloring required */
        if (uncle && uncle.color === 0) {
          grandParent.color = 0;
          parent.color = 1;
          uncle.color = 1;
          pt = grandParent;
        } else {
          /* Case : 2
             pt is right child of its parent
             Left-rotation required */
          if (pt === parent.right) {
            this.rotateLeft(parent);
            pt = parent;
            parent = pt.parent;
          }

          /* Case : 3
             pt is left child of its parent
             Right-rotation required */
          this.rotateRight(grandParent);
          this.swapColor(parent!, grandParent);
          pt = parent!;
        }
      } else {
        /* Case : B
         Parent of pt is right child of Grand-parent of pt */
        const uncle = grandParent!.left;

        /*  Case : 1
          The uncle of pt is also red
          Only Recoloring required */
        if (uncle != null && uncle.color === 0) {
          grandParent!.color = 0;
          parent.color = 1;
          uncle.color = 1;
          pt = grandParent!;
        } else {
          /* Case : 2
             pt is left child of its parent
             Right-rotation required */
          if (pt === parent.left) {
            this.rotateRight(parent);
            pt = parent;
            parent = pt.parent;
          }

          /* Case : 3
             pt is right child of its parent
             Left-rotation required */
          this.rotateLeft(grandParent!);
          this.swapColor(parent!, grandParent!);
          pt = parent!;
        }
      }
    }
    this.root!.color = 1;
  }

  delete(val: T): boolean {
    const node = this.find(val);
    if (!node) return false;
    node.count--;
    if (!node.count) this.deleteNode(node);
    return true;
  }

  deleteAll(val: T): boolean {
    const node = this.find(val);
    if (!node) return false;
    this.deleteNode(node);
    return true;
  }

  deleteNode(v: RBTreeNode<T>): void {
    const u = BSTreplace(v);

    // True when u and v are both black
    const uvBlack = (u === null || u.color === 1) && v.color === 1;
    const parent = v.parent!;

    if (!u) {
      // u is null therefore v is leaf
      if (v === this.root) this.root = null;
      // v is root, making root null
      else {
        if (uvBlack) {
          // u and v both black
          // v is leaf, fix double black at v
          this.fixDoubleBlack(v);
        } else {
          // u or v is red
          if (v.sibling()) {
            // sibling is not null, make it red"
            v.sibling()!.color = 0;
          }
        }
        // delete v from the tree
        if (v.isOnLeft()) parent.left = null;
        else parent.right = null;
      }
      return;
    }

    if (!v.left || !v.right) {
      // v has 1 child
      if (v === this.root) {
        // v is root, assign the value of u to v, and delete u
        v.data = u.data;
        v.left = v.right = null;
      } else {
        // Detach v from tree and move u up
        if (v.isOnLeft()) parent.left = u;
        else parent.right = u;
        u.parent = parent;
        if (uvBlack) this.fixDoubleBlack(u);
        // u and v both black, fix double black at u
        else u.color = 1; // u or v red, color u black
      }
      return;
    }

    // v has 2 children, swap data with successor and recurse
    this.swapData(u, v);
    this.deleteNode(u);

    // find node that replaces a deleted node in BST
    function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
      // when node have 2 children
      if (x.left && x.right) return successor(x.right);
      // when leaf
      if (!x.left && !x.right) return null;
      // when single child
      return x.left ?? x.right;
    }
    // find node that do not have a left child
    // in the subtree of the given node
    function successor(x: RBTreeNode<T>): RBTreeNode<T> {
      let temp = x;
      while (temp.left) temp = temp.left;
      return temp;
    }
  }

  fixDoubleBlack(x: RBTreeNode<T>): void {
    if (x === this.root) return; // Reached root

    const sibling = x.sibling();
    const parent = x.parent!;
    if (!sibling) {
      // No sibiling, double black pushed up
      this.fixDoubleBlack(parent);
    } else {
      if (sibling.color === 0) {
        // Sibling red
        parent.color = 0;
        sibling.color = 1;
        if (sibling.isOnLeft()) this.rotateRight(parent);
        // left case
        else this.rotateLeft(parent); // right case
        this.fixDoubleBlack(x);
      } else {
        // Sibling black
        if (sibling.hasRedChild()) {
          // at least 1 red children
          if (sibling.left && sibling.left.color === 0) {
            if (sibling.isOnLeft()) {
              // left left
              sibling.left.color = sibling.color;
              sibling.color = parent.color;
              this.rotateRight(parent);
            } else {
              // right left
              sibling.left.color = parent.color;
              this.rotateRight(sibling);
              this.rotateLeft(parent);
            }
          } else {
            if (sibling.isOnLeft()) {
              // left right
              sibling.right!.color = parent.color;
              this.rotateLeft(sibling);
              this.rotateRight(parent);
            } else {
              // right right
              sibling.right!.color = sibling.color;
              sibling.color = parent.color;
              this.rotateLeft(parent);
            }
          }
          parent.color = 1;
        } else {
          // 2 black children
          sibling.color = 0;
          if (parent.color === 1) this.fixDoubleBlack(parent);
          else parent.color = 1;
        }
      }
    }
  }

  insert(data: T): boolean {
    // search for a position to insert
    let parent = this.root;
    while (parent) {
      if (this.lt(data, parent.data)) {
        if (!parent.left) break;
        else parent = parent.left;
      } else if (this.lt(parent.data, data)) {
        if (!parent.right) break;
        else parent = parent.right;
      } else break;
    }

    // insert node into parent
    const node = new RBTreeNode(data);
    if (!parent) this.root = node;
    else if (this.lt(node.data, parent.data)) parent.left = node;
    else if (this.lt(parent.data, node.data)) parent.right = node;
    else {
      parent.count++;
      return false;
    }
    node.parent = parent;
    this.fixAfterInsert(node);
    return true;
  }

  find(data: T): RBTreeNode<T> | null {
    let p = this.root;
    while (p) {
      if (this.lt(data, p.data)) {
        p = p.left;
      } else if (this.lt(p.data, data)) {
        p = p.right;
      } else break;
    }
    return p ?? null;
  }

  *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
    if (!root) return;
    for (const v of this.inOrder(root.left!)) yield v;
    yield root.data;
    for (const v of this.inOrder(root.right!)) yield v;
  }

  *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
    if (!root) return;
    for (const v of this.reverseInOrder(root.right!)) yield v;
    yield root.data;
    for (const v of this.reverseInOrder(root.left!)) yield v;
  }
}

class TreeMultiSet<T = number> {
  _size: number;
  tree: RBTree<T>;
  compare: Compare<T>;
  constructor(
    collection: T[] | Compare<T> = [],
    compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
  ) {
    if (typeof collection === 'function') {
      compare = collection;
      collection = [];
    }
    this._size = 0;
    this.compare = compare;
    this.tree = new RBTree(compare);
    for (const val of collection) this.add(val);
  }

  size(): number {
    return this._size;
  }

  has(val: T): boolean {
    return !!this.tree.find(val);
  }

  add(val: T): boolean {
    const successful = this.tree.insert(val);
    this._size++;
    return successful;
  }

  delete(val: T): boolean {
    const successful = this.tree.delete(val);
    if (!successful) return false;
    this._size--;
    return true;
  }

  count(val: T): number {
    const node = this.tree.find(val);
    return node ? node.count : 0;
  }

  ceil(val: T): T | undefined {
    let p = this.tree.root;
    let higher = null;
    while (p) {
      if (this.compare(p.data, val) >= 0) {
        higher = p;
        p = p.left;
      } else {
        p = p.right;
      }
    }
    return higher?.data;
  }

  floor(val: T): T | undefined {
    let p = this.tree.root;
    let lower = null;
    while (p) {
      if (this.compare(val, p.data) >= 0) {
        lower = p;
        p = p.right;
      } else {
        p = p.left;
      }
    }
    return lower?.data;
  }

  higher(val: T): T | undefined {
    let p = this.tree.root;
    let higher = null;
    while (p) {
      if (this.compare(val, p.data) < 0) {
        higher = p;
        p = p.left;
      } else {
        p = p.right;
      }
    }
    return higher?.data;
  }

  lower(val: T): T | undefined {
    let p = this.tree.root;
    let lower = null;
    while (p) {
      if (this.compare(p.data, val) < 0) {
        lower = p;
        p = p.right;
      } else {
        p = p.left;
      }
    }
    return lower?.data;
  }

  first(): T | undefined {
    return this.tree.inOrder().next().value;
  }

  last(): T | undefined {
    return this.tree.reverseInOrder().next().value;
  }

  shift(): T | undefined {
    const first = this.first();
    if (first === undefined) return undefined;
    this.delete(first);
    return first;
  }

  pop(): T | undefined {
    const last = this.last();
    if (last === undefined) return undefined;
    this.delete(last);
    return last;
  }

  *[Symbol.iterator](): Generator<T, void, void> {
    yield* this.values();
  }

  *keys(): Generator<T, void, void> {
    for (const val of this.values()) yield val;
  }

  *values(): Generator<T, undefined, void> {
    for (const val of this.tree.inOrder()) {
      let count = this.count(val);
      while (count--) yield val;
    }
    return undefined;
  }

  /**
   * Return a generator for reverse order traversing the multi-set
   */
  *rvalues(): Generator<T, undefined, void> {
    for (const val of this.tree.reverseInOrder()) {
      let count = this.count(val);
      while (count--) yield val;
    }
    return undefined;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文