返回介绍

solution / 1800-1899 / 1886.Determine Whether Matrix Can Be Obtained By Rotation / README

发布于 2024-06-17 01:03:13 字数 8197 浏览 0 评论 0 收藏 0

1886. 判断矩阵经轮转后是否一致

English Version

题目描述

给你两个大小为 n x n 的二进制矩阵 mattarget 。现 以 90 度顺时针轮转 矩阵 mat 中的元素 若干次 ,如果能够使 mat 与 target 一致,返回 true ;否则,返回_ _false_ 。_

 

示例 1:

输入:mat = [[0,1],[1,0]], target = [[1,0],[0,1]]
输出:true
解释:顺时针轮转 90 度一次可以使 mat 和 target 一致。

示例 2:

输入:mat = [[0,1],[1,1]], target = [[1,0],[0,1]]
输出:false
解释:无法通过轮转矩阵中的元素使 equal 与 target 一致。

示例 3:

输入:mat = [[0,0,0],[0,1,0],[1,1,1]], target = [[1,1,1],[0,1,0],[0,0,0]]
输出:true
解释:顺时针轮转 90 度两次可以使 mat 和 target 一致。

 

提示:

  • n == mat.length == target.length
  • n == mat[i].length == target[i].length
  • 1 <= n <= 10
  • mat[i][j]target[i][j] 不是 0 就是 1

解法

方法一:模拟旋转

旋转矩阵,判断矩阵是否一致,旋转方式同 48. 旋转图像

class Solution:
  def findRotation(self, mat: List[List[int]], target: List[List[int]]) -> bool:
    def rotate(matrix):
      n = len(matrix)
      for i in range(n // 2):
        for j in range(i, n - 1 - i):
          t = matrix[i][j]
          matrix[i][j] = matrix[n - j - 1][i]
          matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1]
          matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1]
          matrix[j][n - i - 1] = t

    for _ in range(4):
      if mat == target:
        return True
      rotate(mat)
    return False
class Solution {
  public boolean findRotation(int[][] mat, int[][] target) {
    int times = 4;
    while (times-- > 0) {
      if (equals(mat, target)) {
        return true;
      }
      rotate(mat);
    }
    return false;
  }

  private void rotate(int[][] matrix) {
    int n = matrix.length;
    for (int i = 0; i < n / 2; ++i) {
      for (int j = i; j < n - 1 - i; ++j) {
        int t = matrix[i][j];
        matrix[i][j] = matrix[n - j - 1][i];
        matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
        matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
        matrix[j][n - i - 1] = t;
      }
    }
  }

  private boolean equals(int[][] nums1, int[][] nums2) {
    int n = nums1.length;
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        if (nums1[i][j] != nums2[i][j]) {
          return false;
        }
      }
    }
    return true;
  }
}
class Solution {
public:
  bool findRotation(vector<vector<int>>& mat, vector<vector<int>>& target) {
    int n = mat.size();
    for (int k = 0; k < 4; ++k) {
      vector<vector<int>> g(n, vector<int>(n));
      for (int i = 0; i < n; ++i)
        for (int j = 0; j < n; ++j)
          g[i][j] = mat[j][n - i - 1];
      if (g == target) return true;
      mat = g;
    }
    return false;
  }
};
func findRotation(mat [][]int, target [][]int) bool {
  n := len(mat)
  for k := 0; k < 4; k++ {
    g := make([][]int, n)
    for i := range g {
      g[i] = make([]int, n)
    }
    for i := 0; i < n; i++ {
      for j := 0; j < n; j++ {
        g[i][j] = mat[j][n-i-1]
      }
    }
    if equals(g, target) {
      return true
    }
    mat = g
  }
  return false
}

func equals(a, b [][]int) bool {
  for i, row := range a {
    for j, v := range row {
      if v != b[i][j] {
        return false
      }
    }
  }
  return true
}
function findRotation(mat: number[][], target: number[][]): boolean {
  for (let k = 0; k < 4; k++) {
    rotate(mat);
    if (isEqual(mat, target)) {
      return true;
    }
  }
  return false;
}

function isEqual(A: number[][], B: number[][]) {
  const n = A.length;
  for (let i = 0; i < n; i++) {
    for (let j = 0; j < n; j++) {
      if (A[i][j] !== B[i][j]) {
        return false;
      }
    }
  }
  return true;
}

function rotate(matrix: number[][]): void {
  const n = matrix.length;
  for (let i = 0; i < n >> 1; i++) {
    for (let j = 0; j < (n + 1) >> 1; j++) {
      [
        matrix[i][j],
        matrix[n - 1 - j][i],
        matrix[n - 1 - i][n - 1 - j],
        matrix[j][n - 1 - i],
      ] = [
        matrix[n - 1 - j][i],
        matrix[n - 1 - i][n - 1 - j],
        matrix[j][n - 1 - i],
        matrix[i][j],
      ];
    }
  }
}
impl Solution {
  pub fn find_rotation(mat: Vec<Vec<i32>>, target: Vec<Vec<i32>>) -> bool {
    let n = mat.len();
    let mut is_equal = [true; 4];
    for i in 0..n {
      for j in 0..n {
        if is_equal[0] && mat[i][j] != target[i][j] {
          is_equal[0] = false;
        }
        if is_equal[1] && mat[i][j] != target[j][n - 1 - i] {
          is_equal[1] = false;
        }
        if is_equal[2] && mat[i][j] != target[n - 1 - i][n - 1 - j] {
          is_equal[2] = false;
        }
        if is_equal[3] && mat[i][j] != target[n - 1 - j][i] {
          is_equal[3] = false;
        }
      }
    }
    is_equal.into_iter().any(|&v| v)
  }
}

方法二:原地比较

此题不同于 48. 旋转图像,并不要求改动原数组,因此,只要比较对应的位置即可。

旋转度数 A B
0 i, j i, j
90 i, j j, n - i
180 i, j n - i, n - j
270 i, j n - j, i

n = A.length - 1 = B.length - 1

class Solution:
  def findRotation(self, mat: List[List[int]], target: List[List[int]]) -> bool:
    for _ in range(4):
      mat = [list(col) for col in zip(*mat[::-1])]
      if mat == target:
        return True
    return False
class Solution {
  public boolean findRotation(int[][] mat, int[][] target) {
    int n = mat.length;
    for (int k = 0; k < 4; ++k) {
      int[][] g = new int[n][n];
      for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
          g[i][j] = mat[j][n - i - 1];
        }
      }
      if (equals(g, target)) {
        return true;
      }
      mat = g;
    }
    return false;
  }

  private boolean equals(int[][] a, int[][] b) {
    int n = a.length;
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        if (a[i][j] != b[i][j]) {
          return false;
        }
      }
    }
    return true;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文