返回介绍

solution / 2600-2699 / 2616.Minimize the Maximum Difference of Pairs / README

发布于 2024-06-17 01:03:02 字数 4364 浏览 0 评论 0 收藏 0

2616. 最小化数对的最大差值

English Version

题目描述

给你一个下标从 0 开始的整数数组 nums 和一个整数 p 。请你从 nums 中找到 p 个下标对,每个下标对对应数值取差值,你需要使得这 p 个差值的 最大值 最小。同时,你需要确保每个下标在这 p 个下标对中最多出现一次。

对于一个下标对 i 和 j ,这一对的差值为 |nums[i] - nums[j]| ,其中 |x| 表示 x 的 绝对值 。

请你返回 p 个下标对对应数值 最大差值 的 最小值 。

 

示例 1:

输入:nums = [10,1,2,7,1,3], p = 2
输出:1
解释:第一个下标对选择 1 和 4 ,第二个下标对选择 2 和 5 。
最大差值为 max(|nums[1] - nums[4]|, |nums[2] - nums[5]|) = max(0, 1) = 1 。所以我们返回 1 。

示例 2:

输入:nums = [4,2,1,2], p = 1
输出:0
解释:选择下标 1 和 3 构成下标对。差值为 |2 - 2| = 0 ,这是最大差值的最小值。

 

提示:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 109
  • 0 <= p <= (nums.length)/2

解法

方法一:二分查找 + 贪心

我们注意到,最大差值具备单调性,即如果最大差值 $x$ 满足条件,那么 $x-1$ 也一定满足条件。因此我们可以使用二分查找的方法,找到最小的满足条件的最大差值。

我们可以将数组 nums 排序,然后枚举最大差值 $x$,判断是否存在 $p$ 个下标对,每个下标对对应数值取差值的最大值不超过 $x$。如果存在,那么我们就可以将 $x$ 减小,否则我们就将 $x$ 增大。

判断是否存在 $p$ 个下标对,每个下标对对应数值取差值的最大值不超过 $x$,可以使用贪心的方法。我们从左到右遍历数组 nums,对于当前遍历到的下标 $i$,如果 $i+1$ 位置的数与 $i$ 位置的数的差值不超过 $x$,那么我们就可以将 $i$ 和 $i+1$ 位置的数作为一个下标对,更新下标对的数量 $cnt$,然后将 $i$ 的值增加 $2$。否则,我们就将 $i$ 的值增加 $1$。遍历结束,如果 $cnt$ 的值大于等于 $p$,那么就说明存在 $p$ 个下标对,每个下标对对应数值取差值的最大值不超过 $x$,否则就说明不存在。

时间复杂度 $O(n \times (\log n + \log m))$,其中 $n$ 是数组 nums 的长度,而 $m$ 是数组 nums 中的最大值与最小值的差值。空间复杂度 $O(1)$。

class Solution:
  def minimizeMax(self, nums: List[int], p: int) -> int:
    def check(diff: int) -> bool:
      cnt = i = 0
      while i < len(nums) - 1:
        if nums[i + 1] - nums[i] <= diff:
          cnt += 1
          i += 2
        else:
          i += 1
      return cnt >= p

    nums.sort()
    return bisect_left(range(nums[-1] - nums[0] + 1), True, key=check)
class Solution {
  public int minimizeMax(int[] nums, int p) {
    Arrays.sort(nums);
    int n = nums.length;
    int l = 0, r = nums[n - 1] - nums[0] + 1;
    while (l < r) {
      int mid = (l + r) >>> 1;
      if (count(nums, mid) >= p) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  }

  private int count(int[] nums, int diff) {
    int cnt = 0;
    for (int i = 0; i < nums.length - 1; ++i) {
      if (nums[i + 1] - nums[i] <= diff) {
        ++cnt;
        ++i;
      }
    }
    return cnt;
  }
}
class Solution {
public:
  int minimizeMax(vector<int>& nums, int p) {
    sort(nums.begin(), nums.end());
    int n = nums.size();
    int l = 0, r = nums[n - 1] - nums[0] + 1;
    auto check = [&](int diff) -> bool {
      int cnt = 0;
      for (int i = 0; i < n - 1; ++i) {
        if (nums[i + 1] - nums[i] <= diff) {
          ++cnt;
          ++i;
        }
      }
      return cnt >= p;
    };
    while (l < r) {
      int mid = (l + r) >> 1;
      if (check(mid)) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  }
};
func minimizeMax(nums []int, p int) int {
  sort.Ints(nums)
  n := len(nums)
  r := nums[n-1] - nums[0] + 1
  return sort.Search(r, func(diff int) bool {
    cnt := 0
    for i := 0; i < n-1; i++ {
      if nums[i+1]-nums[i] <= diff {
        cnt++
        i++
      }
    }
    return cnt >= p
  })
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文