返回介绍

solution / 0800-0899 / 0836.Rectangle Overlap / README

发布于 2024-06-17 01:03:34 字数 3036 浏览 0 评论 0 收藏 0

836. 矩形重叠

English Version

题目描述

矩形以列表 [x1, y1, x2, y2] 的形式表示,其中 (x1, y1) 为左下角的坐标,(x2, y2) 是右上角的坐标。矩形的上下边平行于 x 轴,左右边平行于 y 轴。

如果相交的面积为 ,则称两矩形重叠。需要明确的是,只在角或边接触的两个矩形不构成重叠。

给出两个矩形 rec1rec2 。如果它们重叠,返回 true;否则,返回 false

 

示例 1:

输入:rec1 = [0,0,2,2], rec2 = [1,1,3,3]
输出:true

示例 2:

输入:rec1 = [0,0,1,1], rec2 = [1,0,2,1]
输出:false

示例 3:

输入:rec1 = [0,0,1,1], rec2 = [2,2,3,3]
输出:false

 

提示:

  • rect1.length == 4
  • rect2.length == 4
  • -109 <= rec1[i], rec2[i] <= 109
  • rec1rec2 表示一个面积不为零的有效矩形

解法

方法一:判断不重叠的情况

我们记矩形 $rec1$ 的坐标点为 $(x_1, y_1, x_2, y_2)$,矩形 $rec2$ 的坐标点为 $(x_3, y_3, x_4, y_4)$。

那么当满足以下任一条件时,矩形 $rec1$ 和 $rec2$ 不重叠:

  • 满足 $y_3 \geq y_2$,即 $rec2$ 在 $rec1$ 的上方;
  • 满足 $y_4 \leq y_1$,即 $rec2$ 在 $rec1$ 的下方;
  • 满足 $x_3 \geq x_2$,即 $rec2$ 在 $rec1$ 的右方;
  • 满足 $x_4 \leq x_1$,即 $rec2$ 在 $rec1$ 的左方。

当以上条件都不满足时,矩形 $rec1$ 和 $rec2$ 重叠。

时间复杂度 $O(1)$,空间复杂度 $O(1)$。

class Solution:
  def isRectangleOverlap(self, rec1: List[int], rec2: List[int]) -> bool:
    x1, y1, x2, y2 = rec1
    x3, y3, x4, y4 = rec2
    return not (y3 >= y2 or y4 <= y1 or x3 >= x2 or x4 <= x1)
class Solution {
  public boolean isRectangleOverlap(int[] rec1, int[] rec2) {
    int x1 = rec1[0], y1 = rec1[1], x2 = rec1[2], y2 = rec1[3];
    int x3 = rec2[0], y3 = rec2[1], x4 = rec2[2], y4 = rec2[3];
    return !(y3 >= y2 || y4 <= y1 || x3 >= x2 || x4 <= x1);
  }
}
class Solution {
public:
  bool isRectangleOverlap(vector<int>& rec1, vector<int>& rec2) {
    int x1 = rec1[0], y1 = rec1[1], x2 = rec1[2], y2 = rec1[3];
    int x3 = rec2[0], y3 = rec2[1], x4 = rec2[2], y4 = rec2[3];
    return !(y3 >= y2 || y4 <= y1 || x3 >= x2 || x4 <= x1);
  }
};
func isRectangleOverlap(rec1 []int, rec2 []int) bool {
  x1, y1, x2, y2 := rec1[0], rec1[1], rec1[2], rec1[3]
  x3, y3, x4, y4 := rec2[0], rec2[1], rec2[2], rec2[3]
  return !(y3 >= y2 || y4 <= y1 || x3 >= x2 || x4 <= x1)
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文