返回介绍

solution / 2100-2199 / 2196.Create Binary Tree From Descriptions / README

发布于 2024-06-17 01:03:08 字数 8698 浏览 0 评论 0 收藏 0

2196. 根据描述创建二叉树

English Version

题目描述

给你一个二维整数数组 descriptions ,其中 descriptions[i] = [parenti, childi, isLefti] 表示 parentichildi二叉树 中的 父节点,二叉树中各节点的值 互不相同 。此外:

  • 如果 isLefti == 1 ,那么 childi 就是 parenti 的左子节点。
  • 如果 isLefti == 0 ,那么 childi 就是 parenti 的右子节点。

请你根据 descriptions 的描述来构造二叉树并返回其 根节点

测试用例会保证可以构造出 有效 的二叉树。

 

示例 1:

输入:descriptions = [[20,15,1],[20,17,0],[50,20,1],[50,80,0],[80,19,1]]
输出:[50,20,80,15,17,19]
解释:根节点是值为 50 的节点,因为它没有父节点。
结果二叉树如上图所示。

示例 2:

输入:descriptions = [[1,2,1],[2,3,0],[3,4,1]]
输出:[1,2,null,null,3,4]
解释:根节点是值为 1 的节点,因为它没有父节点。 
结果二叉树如上图所示。 

 

提示:

  • 1 <= descriptions.length <= 104
  • descriptions[i].length == 3
  • 1 <= parenti, childi <= 105
  • 0 <= isLefti <= 1
  • descriptions 所描述的二叉树是一棵有效二叉树

解法

方法一

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def createBinaryTree(self, descriptions: List[List[int]]) -> Optional[TreeNode]:
    g = defaultdict(TreeNode)
    vis = set()
    for p, c, left in descriptions:
      if p not in g:
        g[p] = TreeNode(p)
      if c not in g:
        g[c] = TreeNode(c)
      if left:
        g[p].left = g[c]
      else:
        g[p].right = g[c]
      vis.add(c)
    for v, node in g.items():
      if v not in vis:
        return node
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public TreeNode createBinaryTree(int[][] descriptions) {
    Map<Integer, TreeNode> m = new HashMap<>();
    Set<Integer> vis = new HashSet<>();
    for (int[] d : descriptions) {
      int p = d[0], c = d[1], isLeft = d[2];
      if (!m.containsKey(p)) {
        m.put(p, new TreeNode(p));
      }
      if (!m.containsKey(c)) {
        m.put(c, new TreeNode(c));
      }
      if (isLeft == 1) {
        m.get(p).left = m.get(c);
      } else {
        m.get(p).right = m.get(c);
      }
      vis.add(c);
    }
    for (Map.Entry<Integer, TreeNode> entry : m.entrySet()) {
      if (!vis.contains(entry.getKey())) {
        return entry.getValue();
      }
    }
    return null;
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  TreeNode* createBinaryTree(vector<vector<int>>& descriptions) {
    unordered_map<int, TreeNode*> m;
    unordered_set<int> vis;
    for (auto& d : descriptions) {
      int p = d[0], c = d[1], left = d[2];
      if (!m.count(p)) m[p] = new TreeNode(p);
      if (!m.count(c)) m[c] = new TreeNode(c);
      if (left)
        m[p]->left = m[c];
      else
        m[p]->right = m[c];
      vis.insert(c);
    }
    for (auto& [v, node] : m) {
      if (!vis.count(v)) return node;
    }
    return nullptr;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func createBinaryTree(descriptions [][]int) *TreeNode {
  m := make(map[int]*TreeNode)
  vis := make(map[int]bool)
  for _, d := range descriptions {
    p, c, left := d[0], d[1], d[2]
    if m[p] == nil {
      m[p] = &TreeNode{Val: p}
    }
    if m[c] == nil {
      m[c] = &TreeNode{Val: c}
    }
    if left == 1 {
      m[p].Left = m[c]
    } else {
      m[p].Right = m[c]
    }
    vis[c] = true
  }

  for v, node := range m {
    if !vis[v] {
      return node
    }
  }
  return nil
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function createBinaryTree(descriptions: number[][]): TreeNode | null {
  const map = new Map<number, [number, number]>();
  const isRoot = new Map<number, boolean>();
  for (const [parent, child, isLeft] of descriptions) {
    let [left, right] = map.get(parent) ?? [0, 0];
    if (isLeft) {
      left = child;
    } else {
      right = child;
    }
    if (!isRoot.has(parent)) {
      isRoot.set(parent, true);
    }
    isRoot.set(child, false);
    map.set(parent, [left, right]);
  }
  const dfs = (val: number) => {
    if (val === 0) {
      return null;
    }
    const [left, right] = map.get(val) ?? [0, 0];
    return new TreeNode(val, dfs(left), dfs(right));
  };
  for (const [key, val] of isRoot.entries()) {
    if (val) {
      return dfs(key);
    }
  }
  return null;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//   TreeNode {
//     val,
//     left: None,
//     right: None
//   }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::HashMap;
impl Solution {
  fn dfs(val: i32, map: &HashMap<i32, [i32; 2]>) -> Option<Rc<RefCell<TreeNode>>> {
    if val == 0 {
      return None;
    }
    let mut left = None;
    let mut right = None;
    if let Some(&[l_val, r_val]) = map.get(&val) {
      left = Self::dfs(l_val, map);
      right = Self::dfs(r_val, map);
    }
    Some(Rc::new(RefCell::new(TreeNode { val, left, right })))
  }

  pub fn create_binary_tree(descriptions: Vec<Vec<i32>>) -> Option<Rc<RefCell<TreeNode>>> {
    let mut map = HashMap::new();
    let mut is_root = HashMap::new();
    for description in descriptions.iter() {
      let (parent, child, is_left) = (description[0], description[1], description[2] == 1);
      let [mut left, mut right] = map.get(&parent).unwrap_or(&[0, 0]);
      if is_left {
        left = child;
      } else {
        right = child;
      }
      if !is_root.contains_key(&parent) {
        is_root.insert(parent, true);
      }
      is_root.insert(child, false);
      map.insert(parent, [left, right]);
    }
    for key in is_root.keys() {
      if *is_root.get(key).unwrap() {
        return Self::dfs(*key, &map);
      }
    }
    None
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文