返回介绍

solution / 2500-2599 / 2539.Count the Number of Good Subsequences / README

发布于 2024-06-17 01:03:04 字数 5739 浏览 0 评论 0 收藏 0

2539. 好子序列的个数

English Version

题目描述

如果字符串的某个 子序列 不为空,且其中每一个字符出现的频率都相同,就认为该子序列是一个好子序列。

给你一个字符串 s ,请你统计并返回它的好子序列的个数。由于答案的值可能非常大,请返回对 109 + 7 取余的结果作为答案。

字符串的 子序列 是指,通过删除一些(也可以不删除)字符且不改变剩余字符相对位置所组成的新字符串。

 

示例 1:

输入:s = "aabb"
输出:11
解释:s 的子序列的总数为 24 = 16 。其中,有 5 个子序列不是好子序列,分别是 "_aab_b","a_abb_","_a_a_bb_","_aa_b_b_" 以及空字符串。因此,好子序列的个数为 16 - 5 = 11

示例 2:

输入:s = "leet"
输出:12
解释:s 的子序列的总数为 24 = 16 。其中,有 4 个子序列不是好子序列,分别是 "_lee_t","l_eet_","_leet_" 以及空字符串。因此,好子序列的个数为 16 - 4 = 12

示例 3:

输入:s = "abcd"
输出:15
解释:s 所有非空子序列均为好子序列。因此,好子序列的个数为 16 - 1 = 15

 

提示:

  • 1 <= s.length <= 104
  • s 仅由小写英文字母组成

解法

方法一:枚举 + 组合计数

由于题目说的是子序列中字母出现的次数,因此,我们可以先用一个数组 $cnt$ 统计字符串 $s$ 中每个字母出现的次数,记最大的次数为 $mx$。

接下来,我们在 $[1,2..mx]$ 范围内枚举子序列中字母出现的次数 $i$,然后枚举所有出现过的字母,如果该字母 $c$ 的出现次数 $cnt[c]$ 大于等于 $i$,那么我们可以从这 $cnt[c]$ 个相同字母中选择其中 $i$ 个,也可以一个都不选,那么当前字母的可选方案数就是 $comb(cnt[c], i) + 1$,将所有可选方案数相乘,可以得到当前次数的所有子序列次数,将次数减去 $1$ 累加到答案中。

那么问题的关键在于如何快速求出 $comb(n, k)$,我们可以用逆元来求解,具体实现见代码。

时间复杂度 $O(n \times C)$,空间复杂度 $O(n)$。其中 $n$ 为字符串 $s$ 的长度,而 $C$ 是字符集的大小,本题中 $C = 26$。

N = 10001
MOD = 10**9 + 7
f = [1] * N
g = [1] * N
for i in range(1, N):
  f[i] = f[i - 1] * i % MOD
  g[i] = pow(f[i], MOD - 2, MOD)


def comb(n, k):
  return f[n] * g[k] * g[n - k] % MOD


class Solution:
  def countGoodSubsequences(self, s: str) -> int:
    cnt = Counter(s)
    ans = 0
    for i in range(1, max(cnt.values()) + 1):
      x = 1
      for v in cnt.values():
        if v >= i:
          x = x * (comb(v, i) + 1) % MOD
      ans = (ans + x - 1) % MOD
    return ans
class Solution {
  private static final int N = 10001;
  private static final int MOD = (int) 1e9 + 7;
  private static final long[] F = new long[N];
  private static final long[] G = new long[N];

  static {
    F[0] = 1;
    G[0] = 1;
    for (int i = 1; i < N; ++i) {
      F[i] = F[i - 1] * i % MOD;
      G[i] = qmi(F[i], MOD - 2, MOD);
    }
  }

  public static long qmi(long a, long k, long p) {
    long res = 1;
    while (k != 0) {
      if ((k & 1) == 1) {
        res = res * a % p;
      }
      k >>= 1;
      a = a * a % p;
    }
    return res;
  }

  public static long comb(int n, int k) {
    return (F[n] * G[k] % MOD) * G[n - k] % MOD;
  }

  public int countGoodSubsequences(String s) {
    int[] cnt = new int[26];
    int mx = 1;
    for (int i = 0; i < s.length(); ++i) {
      mx = Math.max(mx, ++cnt[s.charAt(i) - 'a']);
    }
    long ans = 0;
    for (int i = 1; i <= mx; ++i) {
      long x = 1;
      for (int j = 0; j < 26; ++j) {
        if (cnt[j] >= i) {
          x = x * (comb(cnt[j], i) + 1) % MOD;
        }
      }
      ans = (ans + x - 1) % MOD;
    }
    return (int) ans;
  }
}
int N = 10001;
int MOD = 1e9 + 7;
long f[10001];
long g[10001];

long qmi(long a, long k, long p) {
  long res = 1;
  while (k != 0) {
    if ((k & 1) == 1) {
      res = res * a % p;
    }
    k >>= 1;
    a = a * a % p;
  }
  return res;
}

int init = []() {
  f[0] = 1;
  g[0] = 1;
  for (int i = 1; i < N; ++i) {
    f[i] = f[i - 1] * i % MOD;
    g[i] = qmi(f[i], MOD - 2, MOD);
  }
  return 0;
}();

int comb(int n, int k) {
  return (f[n] * g[k] % MOD) * g[n - k] % MOD;
}

class Solution {
public:
  int countGoodSubsequences(string s) {
    int cnt[26]{};
    int mx = 1;
    for (char& c : s) {
      mx = max(mx, ++cnt[c - 'a']);
    }
    long ans = 0;
    for (int i = 1; i <= mx; ++i) {
      long x = 1;
      for (int j = 0; j < 26; ++j) {
        if (cnt[j] >= i) {
          x = (x * (comb(cnt[j], i) + 1)) % MOD;
        }
      }
      ans = (ans + x - 1) % MOD;
    }
    return ans;
  }
};
const n = 1e4 + 1
const mod = 1e9 + 7

var f = make([]int, n)
var g = make([]int, n)

func qmi(a, k, p int) int {
  res := 1
  for k != 0 {
    if k&1 == 1 {
      res = res * a % p
    }
    k >>= 1
    a = a * a % p
  }
  return res
}

func init() {
  f[0], g[0] = 1, 1
  for i := 1; i < n; i++ {
    f[i] = f[i-1] * i % mod
    g[i] = qmi(f[i], mod-2, mod)
  }
}

func comb(n, k int) int {
  return (f[n] * g[k] % mod) * g[n-k] % mod
}

func countGoodSubsequences(s string) (ans int) {
  cnt := [26]int{}
  mx := 1
  for _, c := range s {
    cnt[c-'a']++
    mx = max(mx, cnt[c-'a'])
  }
  for i := 1; i <= mx; i++ {
    x := 1
    for _, v := range cnt {
      if v >= i {
        x = (x * (comb(v, i) + 1)) % mod
      }
    }
    ans = (ans + x - 1) % mod
  }
  return
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文