返回介绍

solution / 1400-1499 / 1447.Simplified Fractions / README

发布于 2024-06-17 01:03:19 字数 3751 浏览 0 评论 0 收藏 0

1447. 最简分数

English Version

题目描述

给你一个整数 n ,请你返回所有 0 到 1 之间(不包括 0 和 1)满足分母小于等于  n 的 最简 分数 。分数可以以 任意 顺序返回。

 

示例 1:

输入:n = 2
输出:["1/2"]
解释:"1/2" 是唯一一个分母小于等于 2 的最简分数。

示例 2:

输入:n = 3
输出:["1/2","1/3","2/3"]

示例 3:

输入:n = 4
输出:["1/2","1/3","1/4","2/3","3/4"]
解释:"2/4" 不是最简分数,因为它可以化简为 "1/2" 。

示例 4:

输入:n = 1
输出:[]

 

提示:

  • 1 <= n <= 100

解法

方法一:枚举分子分母

我们可以枚举分子 $i$ 和分母 $j$,其中 $1 \leq i < j \leq n$,并判断 $i$ 和 $j$ 的最大公约数是否为 $1$,如果是则 $i/j$ 是一个最简分数。

时间复杂度 $O(n^2 \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 是给定的参数。

class Solution:
  def simplifiedFractions(self, n: int) -> List[str]:
    return [
      f'{i}/{j}'
      for i in range(1, n)
      for j in range(i + 1, n + 1)
      if gcd(i, j) == 1
    ]
class Solution {
  public List<String> simplifiedFractions(int n) {
    List<String> ans = new ArrayList<>();
    for (int i = 1; i < n; ++i) {
      for (int j = i + 1; j < n + 1; ++j) {
        if (gcd(i, j) == 1) {
          ans.add(i + "/" + j);
        }
      }
    }
    return ans;
  }

  private int gcd(int a, int b) {
    return b > 0 ? gcd(b, a % b) : a;
  }
}
class Solution {
public:
  vector<string> simplifiedFractions(int n) {
    vector<string> ans;
    for (int i = 1; i < n; ++i) {
      for (int j = i + 1; j < n + 1; ++j) {
        if (__gcd(i, j) == 1) {
          ans.push_back(to_string(i) + "/" + to_string(j));
        }
      }
    }
    return ans;
  }
};
func simplifiedFractions(n int) (ans []string) {
  for i := 1; i < n; i++ {
    for j := i + 1; j < n+1; j++ {
      if gcd(i, j) == 1 {
        ans = append(ans, strconv.Itoa(i)+"/"+strconv.Itoa(j))
      }
    }
  }
  return ans
}

func gcd(a, b int) int {
  if b == 0 {
    return a
  }
  return gcd(b, a%b)
}
function simplifiedFractions(n: number): string[] {
  const ans: string[] = [];
  for (let i = 1; i < n; ++i) {
    for (let j = i + 1; j < n + 1; ++j) {
      if (gcd(i, j) === 1) {
        ans.push(`${i}/${j}`);
      }
    }
  }
  return ans;
}

function gcd(a: number, b: number): number {
  return b === 0 ? a : gcd(b, a % b);
}
impl Solution {
  fn gcd(a: i32, b: i32) -> i32 {
    match b {
      0 => a,
      _ => Solution::gcd(b, a % b),
    }
  }

  pub fn simplified_fractions(n: i32) -> Vec<String> {
    let mut res = vec![];
    for i in 1..n {
      for j in i + 1..=n {
        if Solution::gcd(i, j) == 1 {
          res.push(format!("{}/{}", i, j));
        }
      }
    }
    res
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文