- 概览
- 安装
- 教程
- 算法接口文档
- 简易高效的并行接口
- APIS
- FREQUENTLY ASKED QUESTIONS
- EVOKIT
- 其他
- parl.algorithms.paddle.policy_gradient
- parl.algorithms.paddle.dqn
- parl.algorithms.paddle.ddpg
- parl.algorithms.paddle.ddqn
- parl.algorithms.paddle.oac
- parl.algorithms.paddle.a2c
- parl.algorithms.paddle.qmix
- parl.algorithms.paddle.td3
- parl.algorithms.paddle.sac
- parl.algorithms.paddle.ppo
- parl.algorithms.paddle.maddpg
- parl.core.paddle.model
- parl.core.paddle.algorithm
- parl.remote.remote_decorator
- parl.core.paddle.agent
- parl.remote.client
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
parl.core.paddle.algorithm
parl.core.paddle.algorithm 源代码
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from parl.core.algorithm_base import AlgorithmBase from parl.core.paddle.model import Model __all__ = ['Algorithm'] [文档]class Algorithm(AlgorithmBase): """ | `alias`: ``parl.Algorithm`` | `alias`: ``parl.core.fluid.algorithm.Algorithm`` | ``Algorithm`` defines the way how to update the parameters of the ``Model``. This is where we define loss functions and the optimizer of the neural network. An ``Algorithm`` has at least a model. | PARL has implemented various algorithms(DQN/DDPG/PPO/A3C/IMPALA) that can be reused quickly, which can be accessed with ``parl.algorithms``. Example: .. code-block:: python import parl model = Model() dqn = parl.algorithms.DQN(model, lr=1e-3) Attributes: model(``parl.Model``): a neural network that represents a policy or a Q-value function. Pulic Functions: - ``get_weights``: return a Python dictionary containing parameters of the current model. - ``set_weights``: copy parameters from ``get_weights()`` to the model. - ``sample``: return a noisy action to perform exploration according to the policy. - ``predict``: return an action given current observation. - ``learn``: define the loss function and create an optimizer to minized the loss. """ [文档] def __init__(self, model=None): """ Args: model(``parl.Model``): a neural network that represents a policy or a Q-value function. """ assert isinstance(model, Model) self.model = model [文档] def learn(self, *args, **kwargs): """ Define the loss function and create an optimizer to minize the loss. """ raise NotImplementedError [文档] def predict(self, *args, **kwargs): """ Refine the predicting process, e.g,. use the policy model to predict actions. """ raise NotImplementedError [文档] def sample(self, *args, **kwargs): """ Define the sampling process. This function returns an action with noise to perform exploration. """ raise NotImplementedError [文档] def get_weights(self): """ Get weights of self.model. Returns: weights (dict): a Python dict containing the parameters of self.model. """ return self.model.get_weights() [文档] def set_weights(self, params): """ Set weights from ``get_weights`` to the model. Args: weights (dict): a Python dict containing the parameters of self.model. """ self.model.set_weights(params)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论