返回介绍

solution / 1600-1699 / 1649.Create Sorted Array through Instructions / README

发布于 2024-06-17 01:03:16 字数 13454 浏览 0 评论 0 收藏 0

1649. 通过指令创建有序数组

English Version

题目描述

给你一个整数数组 instructions ,你需要根据 instructions 中的元素创建一个有序数组。一开始你有一个空的数组 nums ,你需要 从左到右 遍历 instructions 中的元素,将它们依次插入 nums 数组中。每一次插入操作的 代价 是以下两者的 较小值 :

  • nums 中 严格小于  instructions[i] 的数字数目。
  • nums 中 严格大于  instructions[i] 的数字数目。

比方说,如果要将 3 插入到 nums = [1,2,3,5] ,那么插入操作的 代价 为 min(2, 1) (元素 1 和  2 小于 3 ,元素 5 大于 3 ),插入后 nums 变成 [1,2,3,3,5] 。

请你返回将 instructions 中所有元素依次插入 nums 后的 总最小代价 。由于答案会很大,请将它对 109 + 7 取余 后返回。

 

示例 1:

输入:instructions = [1,5,6,2]
输出:1
解释:一开始 nums = [] 。
插入 1 ,代价为 min(0, 0) = 0 ,现在 nums = [1] 。
插入 5 ,代价为 min(1, 0) = 0 ,现在 nums = [1,5] 。
插入 6 ,代价为 min(2, 0) = 0 ,现在 nums = [1,5,6] 。
插入 2 ,代价为 min(1, 2) = 1 ,现在 nums = [1,2,5,6] 。
总代价为 0 + 0 + 0 + 1 = 1 。

示例 2:

输入:instructions = [1,2,3,6,5,4]
输出:3
解释:一开始 nums = [] 。
插入 1 ,代价为 min(0, 0) = 0 ,现在 nums = [1] 。
插入 2 ,代价为 min(1, 0) = 0 ,现在 nums = [1,2] 。
插入 3 ,代价为 min(2, 0) = 0 ,现在 nums = [1,2,3] 。
插入 6 ,代价为 min(3, 0) = 0 ,现在 nums = [1,2,3,6] 。
插入 5 ,代价为 min(3, 1) = 1 ,现在 nums = [1,2,3,5,6] 。
插入 4 ,代价为 min(3, 2) = 2 ,现在 nums = [1,2,3,4,5,6] 。
总代价为 0 + 0 + 0 + 0 + 1 + 2 = 3 。

示例 3:

输入:instructions = [1,3,3,3,2,4,2,1,2]
输出:4
解释:一开始 nums = [] 。
插入 1 ,代价为 min(0, 0) = 0 ,现在 nums = [1] 。
插入 3 ,代价为 min(1, 0) = 0 ,现在 nums = [1,3] 。
插入 3 ,代价为 min(1, 0) = 0 ,现在 nums = [1,3,3] 。
插入 3 ,代价为 min(1, 0) = 0 ,现在 nums = [1,3,3,3] 。
插入 2 ,代价为 min(1, 3) = 1 ,现在 nums = [1,2,3,3,3] 。
插入 4 ,代价为 min(5, 0) = 0 ,现在 nums = [1,2,3,3,3,4] 。
​​​​​插入 2 ,代价为 min(1, 4) = 1 ,现在 nums = [1,2,2,3,3,3,4] 。
插入 1 ,代价为 min(0, 6) = 0 ,现在 nums = [1,1,2,2,3,3,3,4] 。
插入 2 ,代价为 min(2, 4) = 2 ,现在 nums = [1,1,2,2,2,3,3,3,4] 。
总代价为 0 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 2 = 4 。

 

提示:

  • 1 <= instructions.length <= 105
  • 1 <= instructions[i] <= 105

解法

方法一:树状数组

树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:

  1. 单点更新 update(x, delta): 把序列 x 位置的数加上一个值 delta;
  2. 前缀和查询 query(x):查询序列 [1,...x] 区间的区间和,即位置 x 的前缀和。

这两个操作的时间复杂度均为 $O(\log n)$。

树状数组最基本的功能就是求比某点 x 小的点的个数(这里的比较是抽象的概念,可以是数的大小、坐标的大小、质量的大小等等)。

比如给定数组 a[5] = {2, 5, 3, 4, 1},求 b[i] = 位置 i 左边小于等于 a[i] 的数的个数。对于此例,b[5] = {0, 1, 1, 2, 0}

解决方案是直接遍历数组,每个位置先求出 query(a[i]),然后再修改树状数组 update(a[i], 1) 即可。当数的范围比较大时,需要进行离散化,即先进行去重并排序,然后对每个数字进行编号。

class BinaryIndexedTree:
  def __init__(self, n):
    self.n = n
    self.c = [0] * (n + 1)

  def update(self, x: int, v: int):
    while x <= self.n:
      self.c[x] += v
      x += x & -x

  def query(self, x: int) -> int:
    s = 0
    while x:
      s += self.c[x]
      x -= x & -x
    return s


class Solution:
  def createSortedArray(self, instructions: List[int]) -> int:
    m = max(instructions)
    tree = BinaryIndexedTree(m)
    ans = 0
    mod = 10**9 + 7
    for i, x in enumerate(instructions):
      cost = min(tree.query(x - 1), i - tree.query(x))
      ans += cost
      tree.update(x, 1)
    return ans % mod
class BinaryIndexedTree {
  private int n;
  private int[] c;

  public BinaryIndexedTree(int n) {
    this.n = n;
    this.c = new int[n + 1];
  }

  public void update(int x, int v) {
    while (x <= n) {
      c[x] += v;
      x += x & -x;
    }
  }

  public int query(int x) {
    int s = 0;
    while (x > 0) {
      s += c[x];
      x -= x & -x;
    }
    return s;
  }
}

class Solution {
  public int createSortedArray(int[] instructions) {
    int m = 0;
    for (int x : instructions) {
      m = Math.max(m, x);
    }
    BinaryIndexedTree tree = new BinaryIndexedTree(m);
    int ans = 0;
    final int mod = (int) 1e9 + 7;
    for (int i = 0; i < instructions.length; ++i) {
      int x = instructions[i];
      int cost = Math.min(tree.query(x - 1), i - tree.query(x));
      ans = (ans + cost) % mod;
      tree.update(x, 1);
    }
    return ans;
  }
}
class BinaryIndexedTree {
public:
  BinaryIndexedTree(int _n)
    : n(_n)
    , c(_n + 1) {}

  void update(int x, int delta) {
    while (x <= n) {
      c[x] += delta;
      x += x & -x;
    }
  }

  int query(int x) {
    int s = 0;
    while (x) {
      s += c[x];
      x -= x & -x;
    }
    return s;
  }

private:
  int n;
  vector<int> c;
};

class Solution {
public:
  int createSortedArray(vector<int>& instructions) {
    int m = *max_element(instructions.begin(), instructions.end());
    BinaryIndexedTree tree(m);
    const int mod = 1e9 + 7;
    int ans = 0;
    for (int i = 0; i < instructions.size(); ++i) {
      int x = instructions[i];
      int cost = min(tree.query(x - 1), i - tree.query(x));
      ans = (ans + cost) % mod;
      tree.update(x, 1);
    }
    return ans;
  }
};
type BinaryIndexedTree struct {
  n int
  c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
  c := make([]int, n+1)
  return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) update(x, delta int) {
  for x <= this.n {
    this.c[x] += delta
    x += x & -x
  }
}

func (this *BinaryIndexedTree) query(x int) int {
  s := 0
  for x > 0 {
    s += this.c[x]
    x -= x & -x
  }
  return s
}

func createSortedArray(instructions []int) (ans int) {
  m := slices.Max(instructions)
  tree := newBinaryIndexedTree(m)
  const mod = 1e9 + 7
  for i, x := range instructions {
    cost := min(tree.query(x-1), i-tree.query(x))
    ans = (ans + cost) % mod
    tree.update(x, 1)
  }
  return
}
class BinaryIndexedTree {
  private n: number;
  private c: number[];

  constructor(n: number) {
    this.n = n;
    this.c = new Array(n + 1).fill(0);
  }

  public update(x: number, v: number): void {
    while (x <= this.n) {
      this.c[x] += v;
      x += x & -x;
    }
  }

  public query(x: number): number {
    let s = 0;
    while (x > 0) {
      s += this.c[x];
      x -= x & -x;
    }
    return s;
  }
}

function createSortedArray(instructions: number[]): number {
  const m = Math.max(...instructions);
  const tree = new BinaryIndexedTree(m);
  let ans = 0;
  const mod = 10 ** 9 + 7;
  for (let i = 0; i < instructions.length; ++i) {
    const x = instructions[i];
    const cost = Math.min(tree.query(x - 1), i - tree.query(x));
    ans = (ans + cost) % mod;
    tree.update(x, 1);
  }
  return ans;
}

方法二:线段树

线段树将整个区间分割为多个不连续的子区间,子区间的数量不超过 log(width)。更新某个元素的值,只需要更新 log(width) 个区间,并且这些区间都包含在一个包含该元素的大区间内。

  • 线段树的每个节点代表一个区间;
  • 线段树具有唯一的根节点,代表的区间是整个统计范围,如 [1, N]
  • 线段树的每个叶子节点代表一个长度为 1 的元区间 [x, x]
  • 对于每个内部节点 [l, r],它的左儿子是 [l, mid],右儿子是 [mid + 1, r], 其中 mid = ⌊(l + r) / 2⌋ (即向下取整)。

本题线段树 Python3 代码 TLE,Java、C++ 代码 AC。

class Node:
  def __init__(self):
    self.l = 0
    self.r = 0
    self.v = 0


class SegmentTree:
  def __init__(self, n):
    self.tr = [Node() for _ in range(4 * n)]
    self.build(1, 1, n)

  def build(self, u, l, r):
    self.tr[u].l = l
    self.tr[u].r = r
    if l == r:
      return
    mid = (l + r) >> 1
    self.build(u << 1, l, mid)
    self.build(u << 1 | 1, mid + 1, r)

  def modify(self, u, x, v):
    if self.tr[u].l == x and self.tr[u].r == x:
      self.tr[u].v += v
      return
    mid = (self.tr[u].l + self.tr[u].r) >> 1
    if x <= mid:
      self.modify(u << 1, x, v)
    else:
      self.modify(u << 1 | 1, x, v)
    self.pushup(u)

  def pushup(self, u):
    self.tr[u].v = self.tr[u << 1].v + self.tr[u << 1 | 1].v

  def query(self, u, l, r):
    if self.tr[u].l >= l and self.tr[u].r <= r:
      return self.tr[u].v
    mid = (self.tr[u].l + self.tr[u].r) >> 1
    v = 0
    if l <= mid:
      v = self.query(u << 1, l, r)
    if r > mid:
      v += self.query(u << 1 | 1, l, r)
    return v


class Solution:
  def createSortedArray(self, instructions: List[int]) -> int:
    n = max(instructions)
    tree = SegmentTree(n)
    ans = 0
    for num in instructions:
      a = tree.query(1, 1, num - 1)
      b = tree.query(1, 1, n) - tree.query(1, 1, num)
      ans += min(a, b)
      tree.modify(1, num, 1)
    return ans % int((1e9 + 7))
class Solution {
  public int createSortedArray(int[] instructions) {
    int n = 100010;
    int mod = (int) 1e9 + 7;
    SegmentTree tree = new SegmentTree(n);
    int ans = 0;
    for (int num : instructions) {
      int a = tree.query(1, 1, num - 1);
      int b = tree.query(1, 1, n) - tree.query(1, 1, num);
      ans += Math.min(a, b);
      ans %= mod;
      tree.modify(1, num, 1);
    }
    return ans;
  }
}

class Node {
  int l;
  int r;
  int v;
}

class SegmentTree {
  private Node[] tr;

  public SegmentTree(int n) {
    tr = new Node[4 * n];
    for (int i = 0; i < tr.length; ++i) {
      tr[i] = new Node();
    }
    build(1, 1, n);
  }

  public void build(int u, int l, int r) {
    tr[u].l = l;
    tr[u].r = r;
    if (l == r) {
      return;
    }
    int mid = (l + r) >> 1;
    build(u << 1, l, mid);
    build(u << 1 | 1, mid + 1, r);
  }

  public void modify(int u, int x, int v) {
    if (tr[u].l == x && tr[u].r == x) {
      tr[u].v += v;
      return;
    }
    int mid = (tr[u].l + tr[u].r) >> 1;
    if (x <= mid) {
      modify(u << 1, x, v);
    } else {
      modify(u << 1 | 1, x, v);
    }
    pushup(u);
  }

  public void pushup(int u) {
    tr[u].v = tr[u << 1].v + tr[u << 1 | 1].v;
  }

  public int query(int u, int l, int r) {
    if (tr[u].l >= l && tr[u].r <= r) {
      return tr[u].v;
    }
    int mid = (tr[u].l + tr[u].r) >> 1;
    int v = 0;
    if (l <= mid) {
      v += query(u << 1, l, r);
    }
    if (r > mid) {
      v += query(u << 1 | 1, l, r);
    }
    return v;
  }
}
class Node {
public:
  int l;
  int r;
  int v;
};

class SegmentTree {
public:
  vector<Node*> tr;

  SegmentTree(int n) {
    tr.resize(4 * n);
    for (int i = 0; i < tr.size(); ++i) tr[i] = new Node();
    build(1, 1, n);
  }

  void build(int u, int l, int r) {
    tr[u]->l = l;
    tr[u]->r = r;
    if (l == r) return;
    int mid = (l + r) >> 1;
    build(u << 1, l, mid);
    build(u << 1 | 1, mid + 1, r);
  }

  void modify(int u, int x, int v) {
    if (tr[u]->l == x && tr[u]->r == x) {
      tr[u]->v += v;
      return;
    }
    int mid = (tr[u]->l + tr[u]->r) >> 1;
    if (x <= mid)
      modify(u << 1, x, v);
    else
      modify(u << 1 | 1, x, v);
    pushup(u);
  }

  void pushup(int u) {
    tr[u]->v = tr[u << 1]->v + tr[u << 1 | 1]->v;
  }

  int query(int u, int l, int r) {
    if (tr[u]->l >= l && tr[u]->r <= r) return tr[u]->v;
    int mid = (tr[u]->l + tr[u]->r) >> 1;
    int v = 0;
    if (l <= mid) v = query(u << 1, l, r);
    if (r > mid) v += query(u << 1 | 1, l, r);
    return v;
  }
};

class Solution {
public:
  int createSortedArray(vector<int>& instructions) {
    int n = *max_element(instructions.begin(), instructions.end());
    int mod = 1e9 + 7;
    SegmentTree* tree = new SegmentTree(n);
    int ans = 0;
    for (int num : instructions) {
      int a = tree->query(1, 1, num - 1);
      int b = tree->query(1, 1, n) - tree->query(1, 1, num);
      ans += min(a, b);
      ans %= mod;
      tree->modify(1, num, 1);
    }
    return ans;
  }
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文