返回介绍

solution / 1700-1799 / 1793.Maximum Score of a Good Subarray / README

发布于 2024-06-17 01:03:14 字数 6231 浏览 0 评论 0 收藏 0

1793. 好子数组的最大分数

English Version

题目描述

给你一个整数数组 nums (下标从 0 开始)和一个整数 k 。

一个子数组 (i, j) 的 分数 定义为 min(nums[i], nums[i+1], ..., nums[j]) * (j - i + 1) 。一个  子数组的两个端点下标需要满足 i <= k <= j 。

请你返回  子数组的最大可能 分数 。

 

示例 1:

输入:nums = [1,4,3,7,4,5], k = 3
输出:15
解释:最优子数组的左右端点下标是 (1, 5) ,分数为 min(4,3,7,4,5) * (5-1+1) = 3 * 5 = 15 。

示例 2:

输入:nums = [5,5,4,5,4,1,1,1], k = 0
输出:20
解释:最优子数组的左右端点下标是 (0, 4) ,分数为 min(5,5,4,5,4) * (4-0+1) = 4 * 5 = 20 。

 

提示:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 2 * 104
  • 0 <= k < nums.length

解法

方法一:单调栈

我们可以枚举 $nums$ 中的每个元素 $nums[i]$ 作为子数组的最小值,利用单调栈找出其左边第一个小于 $nums[i]$ 的位置 $left[i]$ 和右边第一个小于等于 $nums[i]$ 的位置 $right[i]$,则以 $nums[i]$ 为最小值的子数组的分数为 $nums[i] \times (right[i] - left[i] - 1)$。

需要注意的是,只有当左右边界 $left[i]$ 和 $right[i]$ 满足 $left[i]+1 \leq k \leq right[i]-1$ 时,答案才有可能更新。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $nums$ 的长度。

class Solution:
  def maximumScore(self, nums: List[int], k: int) -> int:
    n = len(nums)
    left = [-1] * n
    right = [n] * n
    stk = []
    for i, v in enumerate(nums):
      while stk and nums[stk[-1]] >= v:
        stk.pop()
      if stk:
        left[i] = stk[-1]
      stk.append(i)
    stk = []
    for i in range(n - 1, -1, -1):
      v = nums[i]
      while stk and nums[stk[-1]] > v:
        stk.pop()
      if stk:
        right[i] = stk[-1]
      stk.append(i)
    ans = 0
    for i, v in enumerate(nums):
      if left[i] + 1 <= k <= right[i] - 1:
        ans = max(ans, v * (right[i] - left[i] - 1))
    return ans
class Solution {
  public int maximumScore(int[] nums, int k) {
    int n = nums.length;
    int[] left = new int[n];
    int[] right = new int[n];
    Arrays.fill(left, -1);
    Arrays.fill(right, n);
    Deque<Integer> stk = new ArrayDeque<>();
    for (int i = 0; i < n; ++i) {
      int v = nums[i];
      while (!stk.isEmpty() && nums[stk.peek()] >= v) {
        stk.pop();
      }
      if (!stk.isEmpty()) {
        left[i] = stk.peek();
      }
      stk.push(i);
    }
    stk.clear();
    for (int i = n - 1; i >= 0; --i) {
      int v = nums[i];
      while (!stk.isEmpty() && nums[stk.peek()] > v) {
        stk.pop();
      }
      if (!stk.isEmpty()) {
        right[i] = stk.peek();
      }
      stk.push(i);
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      if (left[i] + 1 <= k && k <= right[i] - 1) {
        ans = Math.max(ans, nums[i] * (right[i] - left[i] - 1));
      }
    }
    return ans;
  }
}
class Solution {
public:
  int maximumScore(vector<int>& nums, int k) {
    int n = nums.size();
    vector<int> left(n, -1);
    vector<int> right(n, n);
    stack<int> stk;
    for (int i = 0; i < n; ++i) {
      int v = nums[i];
      while (!stk.empty() && nums[stk.top()] >= v) {
        stk.pop();
      }
      if (!stk.empty()) {
        left[i] = stk.top();
      }
      stk.push(i);
    }
    stk = stack<int>();
    for (int i = n - 1; i >= 0; --i) {
      int v = nums[i];
      while (!stk.empty() && nums[stk.top()] > v) {
        stk.pop();
      }
      if (!stk.empty()) {
        right[i] = stk.top();
      }
      stk.push(i);
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      if (left[i] + 1 <= k && k <= right[i] - 1) {
        ans = max(ans, nums[i] * (right[i] - left[i] - 1));
      }
    }
    return ans;
  }
};
func maximumScore(nums []int, k int) (ans int) {
  n := len(nums)
  left := make([]int, n)
  right := make([]int, n)
  for i := range left {
    left[i] = -1
    right[i] = n
  }
  stk := []int{}
  for i, v := range nums {
    for len(stk) > 0 && nums[stk[len(stk)-1]] >= v {
      stk = stk[:len(stk)-1]
    }
    if len(stk) > 0 {
      left[i] = stk[len(stk)-1]
    }
    stk = append(stk, i)
  }
  stk = []int{}
  for i := n - 1; i >= 0; i-- {
    v := nums[i]
    for len(stk) > 0 && nums[stk[len(stk)-1]] > v {
      stk = stk[:len(stk)-1]
    }
    if len(stk) > 0 {
      right[i] = stk[len(stk)-1]
    }
    stk = append(stk, i)
  }
  for i, v := range nums {
    if left[i]+1 <= k && k <= right[i]-1 {
      ans = max(ans, v*(right[i]-left[i]-1))
    }
  }
  return
}
function maximumScore(nums: number[], k: number): number {
  const n = nums.length;
  const left: number[] = Array(n).fill(-1);
  const right: number[] = Array(n).fill(n);
  const stk: number[] = [];
  for (let i = 0; i < n; ++i) {
    while (stk.length && nums[stk.at(-1)] >= nums[i]) {
      stk.pop();
    }
    if (stk.length) {
      left[i] = stk.at(-1);
    }
    stk.push(i);
  }
  stk.length = 0;
  for (let i = n - 1; ~i; --i) {
    while (stk.length && nums[stk.at(-1)] > nums[i]) {
      stk.pop();
    }
    if (stk.length) {
      right[i] = stk.at(-1);
    }
    stk.push(i);
  }
  let ans = 0;
  for (let i = 0; i < n; ++i) {
    if (left[i] + 1 <= k && k <= right[i] - 1) {
      ans = Math.max(ans, nums[i] * (right[i] - left[i] - 1));
    }
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文