返回介绍

solution / 2300-2399 / 2316.Count Unreachable Pairs of Nodes in an Undirected Graph / README

发布于 2024-06-17 01:03:07 字数 6138 浏览 0 评论 0 收藏 0

2316. 统计无向图中无法互相到达点对数

English Version

题目描述

给你一个整数 n ,表示一张 无向图 中有 n 个节点,编号为 0 到 n - 1 。同时给你一个二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示节点 ai 和 bi 之间有一条 无向 边。

请你返回 无法互相到达 的不同 点对数目 。

 

示例 1:

输入:n = 3, edges = [[0,1],[0,2],[1,2]]
输出:0
解释:所有点都能互相到达,意味着没有点对无法互相到达,所以我们返回 0 。

示例 2:

输入:n = 7, edges = [[0,2],[0,5],[2,4],[1,6],[5,4]]
输出:14
解释:总共有 14 个点对互相无法到达:
[[0,1],[0,3],[0,6],[1,2],[1,3],[1,4],[1,5],[2,3],[2,6],[3,4],[3,5],[3,6],[4,6],[5,6]]
所以我们返回 14 。

 

提示:

  • 1 <= n <= 105
  • 0 <= edges.length <= 2 * 105
  • edges[i].length == 2
  • 0 <= ai, bi < n
  • ai != bi
  • 不会有重复边。

解法

方法一:DFS

对于无向图中的任意两个节点,如果它们之间存在一条路径,那么它们之间就是互相可达的。

因此,我们可以通过深度优先搜索的方式,找出每一个连通分量中的节点个数 $t$,然后将当前连通分量中的节点个数 $t$ 与之前所有连通分量中的节点个数 $s$ 相乘,即可得到当前连通分量中的不可达点对数目 $s \times t$,然后将 $t$ 加到 $s$ 中。继续搜索下一个连通分量,直到搜索完所有连通分量,即可得到答案。

时间复杂度 $O(n + m)$,空间复杂度 $O(n + m)$。其中 $n$ 和 $m$ 分别是节点数和边数。

class Solution:
  def countPairs(self, n: int, edges: List[List[int]]) -> int:
    def dfs(i: int) -> int:
      if vis[i]:
        return 0
      vis[i] = True
      return 1 + sum(dfs(j) for j in g[i])

    g = [[] for _ in range(n)]
    for a, b in edges:
      g[a].append(b)
      g[b].append(a)
    vis = [False] * n
    ans = s = 0
    for i in range(n):
      t = dfs(i)
      ans += s * t
      s += t
    return ans
class Solution {
  private List<Integer>[] g;
  private boolean[] vis;

  public long countPairs(int n, int[][] edges) {
    g = new List[n];
    vis = new boolean[n];
    Arrays.setAll(g, i -> new ArrayList<>());
    for (var e : edges) {
      int a = e[0], b = e[1];
      g[a].add(b);
      g[b].add(a);
    }
    long ans = 0, s = 0;
    for (int i = 0; i < n; ++i) {
      int t = dfs(i);
      ans += s * t;
      s += t;
    }
    return ans;
  }

  private int dfs(int i) {
    if (vis[i]) {
      return 0;
    }
    vis[i] = true;
    int cnt = 1;
    for (int j : g[i]) {
      cnt += dfs(j);
    }
    return cnt;
  }
}
class Solution {
public:
  long long countPairs(int n, vector<vector<int>>& edges) {
    vector<int> g[n];
    for (auto& e : edges) {
      int a = e[0], b = e[1];
      g[a].push_back(b);
      g[b].push_back(a);
    }
    bool vis[n];
    memset(vis, 0, sizeof(vis));
    function<int(int)> dfs = [&](int i) {
      if (vis[i]) {
        return 0;
      }
      vis[i] = true;
      int cnt = 1;
      for (int j : g[i]) {
        cnt += dfs(j);
      }
      return cnt;
    };
    long long ans = 0, s = 0;
    for (int i = 0; i < n; ++i) {
      int t = dfs(i);
      ans += s * t;
      s += t;
    }
    return ans;
  }
};
func countPairs(n int, edges [][]int) (ans int64) {
  g := make([][]int, n)
  for _, e := range edges {
    a, b := e[0], e[1]
    g[a] = append(g[a], b)
    g[b] = append(g[b], a)
  }
  vis := make([]bool, n)
  var dfs func(int) int
  dfs = func(i int) int {
    if vis[i] {
      return 0
    }
    vis[i] = true
    cnt := 1
    for _, j := range g[i] {
      cnt += dfs(j)
    }
    return cnt
  }
  var s int64
  for i := 0; i < n; i++ {
    t := int64(dfs(i))
    ans += s * t
    s += t
  }
  return
}
function countPairs(n: number, edges: number[][]): number {
  const g: number[][] = Array.from({ length: n }, () => []);
  for (const [a, b] of edges) {
    g[a].push(b);
    g[b].push(a);
  }
  const vis: boolean[] = Array(n).fill(false);
  const dfs = (i: number): number => {
    if (vis[i]) {
      return 0;
    }
    vis[i] = true;
    let cnt = 1;
    for (const j of g[i]) {
      cnt += dfs(j);
    }
    return cnt;
  };
  let [ans, s] = [0, 0];
  for (let i = 0; i < n; ++i) {
    const t = dfs(i);
    ans += s * t;
    s += t;
  }
  return ans;
}
impl Solution {
  pub fn count_pairs(n: i32, edges: Vec<Vec<i32>>) -> i64 {
    let n = n as usize;
    let mut g = vec![vec![]; n];
    let mut vis = vec![false; n];
    for e in edges {
      let u = e[0] as usize;
      let v = e[1] as usize;
      g[u].push(v);
      g[v].push(u);
    }

    fn dfs(g: &Vec<Vec<usize>>, vis: &mut Vec<bool>, u: usize) -> i64 {
      if vis[u] {
        return 0;
      }
      vis[u] = true;
      let mut cnt = 1;
      for &v in &g[u] {
        cnt += dfs(g, vis, v);
      }
      cnt
    }

    let mut ans = 0;
    let mut s = 0;
    for u in 0..n {
      let t = dfs(&g, &mut vis, u);
      ans += t * s;
      s += t;
    }
    ans
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文