返回介绍

solution / 2800-2899 / 2851.String Transformation / README

发布于 2024-06-17 01:02:59 字数 9203 浏览 0 评论 0 收藏 0

2851. 字符串转换

English Version

题目描述

给你两个长度都为 n 的字符串 s 和 t 。你可以对字符串 s 执行以下操作:

  • s 长度为 l (0 < l < n)的 后缀字符串 删除,并将它添加在 s 的开头。
    比方说,s = 'abcd' ,那么一次操作中,你可以删除后缀 'cd' ,并将它添加到 s 的开头,得到 s = 'cdab' 。

给你一个整数 k ,请你返回 恰好 k 次操作将_ _s 变为_ _t 的方案数。

由于答案可能很大,返回答案对 109 + 7 取余 后的结果。

 

示例 1:

输入:s = "abcd", t = "cdab", k = 2
输出:2
解释:
第一种方案:
第一次操作,选择 index = 3 开始的后缀,得到 s = "dabc" 。
第二次操作,选择 index = 3 开始的后缀,得到 s = "cdab" 。

第二种方案:
第一次操作,选择 index = 1 开始的后缀,得到 s = "bcda" 。
第二次操作,选择 index = 1 开始的后缀,得到 s = "cdab" 。

示例 2:

输入:s = "ababab", t = "ababab", k = 1
输出:2
解释:
第一种方案:
选择 index = 2 开始的后缀,得到 s = "ababab" 。

第二种方案:
选择 index = 4 开始的后缀,得到 s = "ababab" 。

 

提示:

  • 2 <= s.length <= 5 * 105
  • 1 <= k <= 1015
  • s.length == t.length
  • s 和 t 都只包含小写英文字母。

解法

方法一

"""
DP, Z-algorithm, Fast mod.
Approach
How to represent a string?
Each operation is just a rotation. Each result string can be represented by an integer from 0 to n - 1. Namely, it's just the new index of s[0].
How to find the integer(s) that can represent string t?
Create a new string s + t + t (length = 3 * n).
Use Z-algorithm (or KMP), for each n <= index < 2 * n, calculate the maximum prefix length that each substring starts from index can match, if the length >= n, then (index - n) is a valid integer representation.
How to get the result?
It's a very obvious DP.
If we use an integer to represent a string, we only need to consider the transition from zero to non-zero and from non-zero to zero. In other words, all the non-zero strings should have the same result.
So let dp[t][i = 0/1] be the number of ways to get the zero/nonzero string
after excatly t steps.
Then
dp[t][0] = dp[t - 1][1] * (n - 1).
All the non zero strings can make it.
dp[t][1] = dp[t - 1][0] + dp[t - 1] * (n - 2).
For a particular non zero string, all the other non zero strings and zero string can make it.
We have dp[0][0] = 1 and dp[0][1] = 0
Use matrix multiplication.
How to calculate dp[k][x = 0, 1] faster?
Use matrix multiplication
vector (dp[t - 1][0], dp[t - 1][1])
multiplies matrix
[0 1]
[n - 1 n - 2]
== vector (dp[t][0], dp[t - 1][1]).
So we just need to calculate the kth power of the matrix which can be done by fast power algorith.
Complexity
Time complexity:
O(n + logk)
Space complexity:
O(n)
"""


class Solution:
  M: int = 1000000007

  def add(self, x: int, y: int) -> int:
    x += y
    if x >= self.M:
      x -= self.M
    return x

  def mul(self, x: int, y: int) -> int:
    return int(x * y % self.M)

  def getZ(self, s: str) -> List[int]:
    n = len(s)
    z = [0] * n
    left = right = 0
    for i in range(1, n):
      if i <= right and z[i - left] <= right - i:
        z[i] = z[i - left]
      else:
        z_i = max(0, right - i + 1)
        while i + z_i < n and s[i + z_i] == s[z_i]:
          z_i += 1
        z[i] = z_i
      if i + z[i] - 1 > right:
        left = i
        right = i + z[i] - 1
    return z

  def matrixMultiply(self, a: List[List[int]], b: List[List[int]]) -> List[List[int]]:
    m = len(a)
    n = len(a[0])
    p = len(b[0])
    r = [[0] * p for _ in range(m)]
    for i in range(m):
      for j in range(p):
        for k in range(n):
          r[i][j] = self.add(r[i][j], self.mul(a[i][k], b[k][j]))
    return r

  def matrixPower(self, a: List[List[int]], y: int) -> List[List[int]]:
    n = len(a)
    r = [[0] * n for _ in range(n)]
    for i in range(n):
      r[i][i] = 1
    x = [a[i][:] for i in range(n)]
    while y > 0:
      if y & 1:
        r = self.matrixMultiply(r, x)
      x = self.matrixMultiply(x, x)
      y >>= 1
    return r

  def numberOfWays(self, s: str, t: str, k: int) -> int:
    n = len(s)
    dp = self.matrixPower([[0, 1], [n - 1, n - 2]], k)[0]
    s += t + t
    z = self.getZ(s)
    m = n + n
    result = 0
    for i in range(n, m):
      if z[i] >= n:
        result = self.add(result, dp[0] if i - n == 0 else dp[1])
    return result
class Solution {
  private static final int M = 1000000007;

  private int add(int x, int y) {
    if ((x += y) >= M) {
      x -= M;
    }
    return x;
  }

  private int mul(long x, long y) {
    return (int) (x * y % M);
  }

  private int[] getZ(String s) {
    int n = s.length();
    int[] z = new int[n];
    for (int i = 1, left = 0, right = 0; i < n; ++i) {
      if (i <= right && z[i - left] <= right - i) {
        z[i] = z[i - left];
      } else {
        int z_i = Math.max(0, right - i + 1);
        while (i + z_i < n && s.charAt(i + z_i) == s.charAt(z_i)) {
          z_i++;
        }
        z[i] = z_i;
      }
      if (i + z[i] - 1 > right) {
        left = i;
        right = i + z[i] - 1;
      }
    }
    return z;
  }

  private int[][] matrixMultiply(int[][] a, int[][] b) {
    int m = a.length, n = a[0].length, p = b[0].length;
    int[][] r = new int[m][p];
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < p; ++j) {
        for (int k = 0; k < n; ++k) {
          r[i][j] = add(r[i][j], mul(a[i][k], b[k][j]));
        }
      }
    }
    return r;
  }

  private int[][] matrixPower(int[][] a, long y) {
    int n = a.length;
    int[][] r = new int[n][n];
    for (int i = 0; i < n; ++i) {
      r[i][i] = 1;
    }
    int[][] x = new int[n][n];
    for (int i = 0; i < n; ++i) {
      System.arraycopy(a[i], 0, x[i], 0, n);
    }
    while (y > 0) {
      if ((y & 1) == 1) {
        r = matrixMultiply(r, x);
      }
      x = matrixMultiply(x, x);
      y >>= 1;
    }
    return r;
  }

  public int numberOfWays(String s, String t, long k) {
    int n = s.length();
    int[] dp = matrixPower(new int[][] {{0, 1}, {n - 1, n - 2}}, k)[0];
    s += t + t;
    int[] z = getZ(s);
    int m = n + n;
    int result = 0;
    for (int i = n; i < m; ++i) {
      if (z[i] >= n) {
        result = add(result, dp[i - n == 0 ? 0 : 1]);
      }
    }
    return result;
  }
}
class Solution {
  const int M = 1000000007;

  int add(int x, int y) {
    if ((x += y) >= M) {
      x -= M;
    }
    return x;
  }

  int mul(long long x, long long y) {
    return x * y % M;
  }

  vector<int> getz(const string& s) {
    const int n = s.length();
    vector<int> z(n);
    for (int i = 1, left = 0, right = 0; i < n; ++i) {
      if (i <= right && z[i - left] <= right - i) {
        z[i] = z[i - left];
      } else {
        for (z[i] = max(0, right - i + 1); i + z[i] < n && s[i + z[i]] == s[z[i]]; ++z[i])
          ;
      }
      if (i + z[i] - 1 > right) {
        left = i;
        right = i + z[i] - 1;
      }
    }
    return z;
  }

  vector<vector<int>> mul(const vector<vector<int>>& a, const vector<vector<int>>& b) {
    const int m = a.size(), n = a[0].size(), p = b[0].size();
    vector<vector<int>> r(m, vector<int>(p));
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        for (int k = 0; k < p; ++k) {
          r[i][k] = add(r[i][k], mul(a[i][j], b[j][k]));
        }
      }
    }
    return r;
  }

  vector<vector<int>> pow(const vector<vector<int>>& a, long long y) {
    const int n = a.size();
    vector<vector<int>> r(n, vector<int>(n));
    for (int i = 0; i < n; ++i) {
      r[i][i] = 1;
    }
    auto x = a;
    for (; y; y >>= 1) {
      if (y & 1) {
        r = mul(r, x);
      }
      x = mul(x, x);
    }
    return r;
  }

public:
  int numberOfWays(string s, string t, long long k) {
    const int n = s.length();
    const auto dp = pow({{0, 1}, {n - 1, n - 2}}, k)[0];
    s.append(t);
    s.append(t);
    const auto z = getz(s);
    const int m = n + n;
    int r = 0;
    for (int i = n; i < m; ++i) {
      if (z[i] >= n) {
        r = add(r, dp[!!(i - n)]);
      }
    }
    return r;
  }
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文