第零章、必读系列
- 学习算法和刷题的框架思维
- 学习数据结构和算法读什么书
- 动态规划解题框架
- 动态规划答疑篇
- 回溯算法解题框架
- 为了学会二分查找,我写了首诗
- 滑动窗口解题框架
- 双指针技巧解题框架
- Linux 的进程、线程、文件描述符是什么
- Git / SQL / 正则表达式的在线练习平台
- 动态规划设计:最长递增子序列
第一章、动态规划系列
- 编辑距离
- 经典动态规划问题:高楼扔鸡蛋
- 经典动态规划问题:高楼扔鸡蛋(进阶)
- 动态规划之子序列问题解题模板
- 动态规划之博弈问题
- 贪心算法之区间调度问题
- 动态规划之KMP字符匹配算法
- 团灭 LeetCode 股票买卖问题
- 团灭 LeetCode 打家劫舍问题
- 动态规划之四键键盘
- 动态规划之正则表达
- 最长公共子序列
第二章、数据结构系列
第三章、算法思维系列
- 算法学习之路
- 回溯算法团灭排列、组合、子集问题
- twoSum 问题的核心思想
- 常用的位操作
- 拆解复杂问题:实现计算器
- 烧饼排序
- 前缀和技巧
- 字符串乘法
- FloodFill 算法详解及应用
- 区间调度之区间合并问题
- 区间调度之区间交集问题
- 信封嵌套问题
- 几个反直觉的概率问题
- 洗牌算法
- 递归详解
第四章、高频面试系列
- 如何高效寻找素数
- 如何运用二分查找算法
- 如何高效解决接雨水问题
- 如何去除有序数组的重复元素
- 如何寻找最长回文子串
- 如何 k 个一组反转链表
- 如何判定括号合法性
- 如何寻找消失的元素
- 如何寻找缺失和重复的元素
- 如何判断回文链表
- 如何在无限序列中随机抽取元素
- 如何调度考生的座位
- Union-Find 算法详解
- Union-Find 算法应用
- 一行代码就能解决的算法题
- 二分查找高效判定子序列
第五章、计算机技术
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
区间调度之区间合并问题
上篇文章用贪心算法解决了区间调度问题:给你很多区间,让你求其中的最大不重叠子集。
其实对于区间相关的问题,还有很多其他类型,本文就来讲讲区间合并问题(Merge Interval)。
LeetCode 第 56 题就是一道相关问题,题目很好理解:
我们解决区间问题的一般思路是先排序,然后观察规律。
一、思路
一个区间可以表示为 [start, end]
,前文聊的区间调度问题,需要按 end
排序,以便满足贪心选择性质。而对于区间合并问题,其实按 end
和 start
排序都可以,不过为了清晰起见,我们选择按 start
排序。
显然,对于几个相交区间合并后的结果区间 x
,x.start
一定是这些相交区间中 start
最小的,x.end
一定是这些相交区间中 end
最大的。
由于已经排了序,x.start
很好确定,求 x.end
也很容易,可以类比在数组中找最大值的过程:
int max_ele = arr[0];
for (int i = 1; i < arr.length; i++)
max_ele = max(max_ele, arr[i]);
return max_ele;
二、代码
# intervals 形如 [[1,3],[2,6]...]
def merge(intervals):
if not intervals: return []
# 按区间的 start 升序排列
intervals.sort(key=lambda intv: intv[0])
res = []
res.append(intervals[0])
for i in range(1, len(intervals)):
curr = intervals[i]
# res 中最后一个元素的引用
last = res[-1]
if curr[0] <= last[1]:
# 找到最大的 end
last[1] = max(last[1], curr[1])
else:
# 处理下一个待合并区间
res.append(curr)
return res
看下动画就一目了然了:
至此,区间合并问题就解决了。本文篇幅短小,因为区间合并只是区间问题的一个类型,后续还有一些区间问题。本想把所有问题类型都总结在一篇文章,但有读者反应,长文只会收藏不会看... 所以还是分成小短文吧,读者有什么看法可以在留言板留言交流。
本文终,希望对你有帮助。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论