返回介绍

solution / 1600-1699 / 1671.Minimum Number of Removals to Make Mountain Array / README

发布于 2024-06-17 01:03:15 字数 6153 浏览 0 评论 0 收藏 0

1671. 得到山形数组的最少删除次数

English Version

题目描述

我们定义 arr 是 山形数组 当且仅当它满足:

  • arr.length >= 3
  • 存在某个下标 i (从 0 开始) 满足 0 < i < arr.length - 1 且:
    • arr[0] < arr[1] < ... < arr[i - 1] < arr[i]
    • arr[i] > arr[i + 1] > ... > arr[arr.length - 1]

给你整数数组 nums​ ,请你返回将 nums 变成 山形状数组 的​ 最少 删除次数。

 

示例 1:

输入:nums = [1,3,1]
输出:0
解释:数组本身就是山形数组,所以我们不需要删除任何元素。

示例 2:

输入:nums = [2,1,1,5,6,2,3,1]
输出:3
解释:一种方法是将下标为 0,1 和 5 的元素删除,剩余元素为 [1,5,6,3,1] ,是山形数组。

 

提示:

  • 3 <= nums.length <= 1000
  • 1 <= nums[i] <= 109
  • 题目保证 nums 删除一些元素后一定能得到山形数组。

解法

方法一:动态规划

本题可以转化为求最长上升子序列和最长下降子序列。

我们定义 $left[i]$ 表示以 $nums[i]$ 结尾的最长上升子序列的长度,定义 $right[i]$ 表示以 $nums[i]$ 开头的最长下降子序列的长度。

那么最终答案就是 $n - \max(left[i] + right[i] - 1)$,其中 $1 \leq i \leq n$,并且 $left[i] \gt 1$ 且 $right[i] \gt 1$。

时间复杂度 $O(n^2)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $nums$ 的长度。

class Solution:
  def minimumMountainRemovals(self, nums: List[int]) -> int:
    n = len(nums)
    left = [1] * n
    right = [1] * n
    for i in range(1, n):
      for j in range(i):
        if nums[i] > nums[j]:
          left[i] = max(left[i], left[j] + 1)
    for i in range(n - 2, -1, -1):
      for j in range(i + 1, n):
        if nums[i] > nums[j]:
          right[i] = max(right[i], right[j] + 1)
    return n - max(a + b - 1 for a, b in zip(left, right) if a > 1 and b > 1)
class Solution {
  public int minimumMountainRemovals(int[] nums) {
    int n = nums.length;
    int[] left = new int[n];
    int[] right = new int[n];
    Arrays.fill(left, 1);
    Arrays.fill(right, 1);
    for (int i = 1; i < n; ++i) {
      for (int j = 0; j < i; ++j) {
        if (nums[i] > nums[j]) {
          left[i] = Math.max(left[i], left[j] + 1);
        }
      }
    }
    for (int i = n - 2; i >= 0; --i) {
      for (int j = i + 1; j < n; ++j) {
        if (nums[i] > nums[j]) {
          right[i] = Math.max(right[i], right[j] + 1);
        }
      }
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      if (left[i] > 1 && right[i] > 1) {
        ans = Math.max(ans, left[i] + right[i] - 1);
      }
    }
    return n - ans;
  }
}
class Solution {
public:
  int minimumMountainRemovals(vector<int>& nums) {
    int n = nums.size();
    vector<int> left(n, 1), right(n, 1);
    for (int i = 1; i < n; ++i) {
      for (int j = 0; j < i; ++j) {
        if (nums[i] > nums[j]) {
          left[i] = max(left[i], left[j] + 1);
        }
      }
    }
    for (int i = n - 2; i >= 0; --i) {
      for (int j = i + 1; j < n; ++j) {
        if (nums[i] > nums[j]) {
          right[i] = max(right[i], right[j] + 1);
        }
      }
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      if (left[i] > 1 && right[i] > 1) {
        ans = max(ans, left[i] + right[i] - 1);
      }
    }
    return n - ans;
  }
};
func minimumMountainRemovals(nums []int) int {
  n := len(nums)
  left, right := make([]int, n), make([]int, n)
  for i := range left {
    left[i], right[i] = 1, 1
  }
  for i := 1; i < n; i++ {
    for j := 0; j < i; j++ {
      if nums[i] > nums[j] {
        left[i] = max(left[i], left[j]+1)
      }
    }
  }
  for i := n - 2; i >= 0; i-- {
    for j := i + 1; j < n; j++ {
      if nums[i] > nums[j] {
        right[i] = max(right[i], right[j]+1)
      }
    }
  }
  ans := 0
  for i := range left {
    if left[i] > 1 && right[i] > 1 {
      ans = max(ans, left[i]+right[i]-1)
    }
  }
  return n - ans
}
function minimumMountainRemovals(nums: number[]): number {
  const n = nums.length;
  const left = Array(n).fill(1);
  const right = Array(n).fill(1);
  for (let i = 1; i < n; ++i) {
    for (let j = 0; j < i; ++j) {
      if (nums[i] > nums[j]) {
        left[i] = Math.max(left[i], left[j] + 1);
      }
    }
  }
  for (let i = n - 2; i >= 0; --i) {
    for (let j = i + 1; j < n; ++j) {
      if (nums[i] > nums[j]) {
        right[i] = Math.max(right[i], right[j] + 1);
      }
    }
  }
  let ans = 0;
  for (let i = 0; i < n; ++i) {
    if (left[i] > 1 && right[i] > 1) {
      ans = Math.max(ans, left[i] + right[i] - 1);
    }
  }
  return n - ans;
}
impl Solution {
  pub fn minimum_mountain_removals(nums: Vec<i32>) -> i32 {
    let n = nums.len();
    let mut left = vec![1; n];
    let mut right = vec![1; n];
    for i in 1..n {
      for j in 0..i {
        if nums[i] > nums[j] {
          left[i] = left[i].max(left[j] + 1);
        }
      }
    }
    for i in (0..n - 1).rev() {
      for j in i + 1..n {
        if nums[i] > nums[j] {
          right[i] = right[i].max(right[j] + 1);
        }
      }
    }

    let mut ans = 0;
    for i in 0..n {
      if left[i] > 1 && right[i] > 1 {
        ans = ans.max(left[i] + right[i] - 1);
      }
    }

    (n as i32) - ans
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文