返回介绍

solution / 0000-0099 / 0052.N-Queens II / README

发布于 2024-06-17 01:04:40 字数 4365 浏览 0 评论 0 收藏 0

52. N 皇后 II

English Version

题目描述

n 皇后问题 研究的是如何将 n 个皇后放置在 n × n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回 n 皇后问题 不同的解决方案的数量。

 

示例 1:

输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

输入:n = 1
输出:1

 

提示:

  • 1 <= n <= 9

解法

方法一:回溯

我们设计一个函数 $dfs(i)$,表示从第 $i$ 行开始搜索,搜索到的结果累加到答案中。

在第 $i$ 行,我们枚举第 $i$ 行的每一列,如果当前列不与前面已经放置的皇后发生冲突,那么我们就可以放置一个皇后,然后继续搜索下一行,即调用 $dfs(i + 1)$。

如果发生冲突,那么我们就跳过当前列,继续枚举下一列。

判断是否发生冲突,我们需要用三个数组分别记录每一列、每一条正对角线、每一条反对角线是否已经放置了皇后。

具体地,我们用 $cols$ 数组记录每一列是否已经放置了皇后,用 $dg$ 数组记录每一条正对角线是否已经放置了皇后,用 $udg$ 数组记录每一条反对角线是否已经放置了皇后。

时间复杂度 $O(n!)$,空间复杂度 $O(n)$。其中 $n$ 是皇后的数量。

class Solution:
  def totalNQueens(self, n: int) -> int:
    def dfs(i: int):
      if i == n:
        nonlocal ans
        ans += 1
        return
      for j in range(n):
        a, b = i + j, i - j + n
        if cols[j] or dg[a] or udg[b]:
          continue
        cols[j] = dg[a] = udg[b] = True
        dfs(i + 1)
        cols[j] = dg[a] = udg[b] = False

    cols = [False] * 10
    dg = [False] * 20
    udg = [False] * 20
    ans = 0
    dfs(0)
    return ans
class Solution {
  private int n;
  private int ans;
  private boolean[] cols = new boolean[10];
  private boolean[] dg = new boolean[20];
  private boolean[] udg = new boolean[20];

  public int totalNQueens(int n) {
    this.n = n;
    dfs(0);
    return ans;
  }

  private void dfs(int i) {
    if (i == n) {
      ++ans;
      return;
    }
    for (int j = 0; j < n; ++j) {
      int a = i + j, b = i - j + n;
      if (cols[j] || dg[a] || udg[b]) {
        continue;
      }
      cols[j] = true;
      dg[a] = true;
      udg[b] = true;
      dfs(i + 1);
      cols[j] = false;
      dg[a] = false;
      udg[b] = false;
    }
  }
}
class Solution {
public:
  int totalNQueens(int n) {
    bitset<10> cols;
    bitset<20> dg;
    bitset<20> udg;
    int ans = 0;
    function<void(int)> dfs = [&](int i) {
      if (i == n) {
        ++ans;
        return;
      }
      for (int j = 0; j < n; ++j) {
        int a = i + j, b = i - j + n;
        if (cols[j] || dg[a] || udg[b]) continue;
        cols[j] = dg[a] = udg[b] = 1;
        dfs(i + 1);
        cols[j] = dg[a] = udg[b] = 0;
      }
    };
    dfs(0);
    return ans;
  }
};
func totalNQueens(n int) (ans int) {
  cols := [10]bool{}
  dg := [20]bool{}
  udg := [20]bool{}
  var dfs func(int)
  dfs = func(i int) {
    if i == n {
      ans++
      return
    }
    for j := 0; j < n; j++ {
      a, b := i+j, i-j+n
      if cols[j] || dg[a] || udg[b] {
        continue
      }
      cols[j], dg[a], udg[b] = true, true, true
      dfs(i + 1)
      cols[j], dg[a], udg[b] = false, false, false
    }
  }
  dfs(0)
  return
}
function totalNQueens(n: number): number {
  const cols: boolean[] = Array(10).fill(false);
  const dg: boolean[] = Array(20).fill(false);
  const udg: boolean[] = Array(20).fill(false);
  let ans = 0;
  const dfs = (i: number) => {
    if (i === n) {
      ++ans;
      return;
    }
    for (let j = 0; j < n; ++j) {
      let [a, b] = [i + j, i - j + n];
      if (cols[j] || dg[a] || udg[b]) {
        continue;
      }
      cols[j] = dg[a] = udg[b] = true;
      dfs(i + 1);
      cols[j] = dg[a] = udg[b] = false;
    }
  };
  dfs(0);
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文