返回介绍

solution / 0400-0499 / 0460.LFU Cache / README

发布于 2024-06-17 01:04:00 字数 17531 浏览 0 评论 0 收藏 0

460. LFU 缓存

English Version

题目描述

请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。

实现 LFUCache 类:

  • LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
  • int get(int key) - 如果键 key 存在于缓存中,则获取键的值,否则返回 -1
  • void put(int key, int value) - 如果键 key 已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量 capacity 时,则应该在插入新项之前,移除最不经常使用的项。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最久未使用 的键。

为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。

当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 getput 操作,使用计数器的值将会递增。

函数 getput 必须以 O(1) 的平均时间复杂度运行。

 

示例:

输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1);   // cache=[1,_], cnt(1)=1
lfu.put(2, 2);   // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1);    // 返回 1
         // cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3);   // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
         // cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2);    // 返回 -1(未找到)
lfu.get(3);    // 返回 3
         // cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4);   // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
         // cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1);    // 返回 -1(未找到)
lfu.get(3);    // 返回 3
         // cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4);    // 返回 4
         // cache=[3,4], cnt(4)=2, cnt(3)=3

 

提示:

  • 1 <= capacity <= 104
  • 0 <= key <= 105
  • 0 <= value <= 109
  • 最多调用 2 * 105getput 方法

解法

方法一:双哈希表 + 双向链表

我们定义两个哈希表,其中:

  • 哈希表 $map$:用于存储缓存的键值对,哈希表的键 $key$ 对应到缓存节点 $node$,方便 $O(1)$ 时间内获取缓存节点。
  • 哈希表 $freqMap$:用于存储使用频率相同的缓存节点的双向链表,哈希表的键 $freq$ 对应到双向链表 $list$,方便 $O(1)$ 时间内获取使用频率相同的缓存节点的双向链表。

另外,我们还需要维护一个变量 $minFreq$,用于记录当前最小的使用频率,方便 $O(1)$ 时间内获取最小使用频率的缓存节点。

对于 $get(key)$ 操作:

我们首先判断 $capacity$ 是否为 $0$ 或者 $map$ 中是否存在键 $key$,如果不存在则返回 $-1$;否则从 $map$ 中获取缓存节点 $node$,并将 $node$ 的使用频率加 $1$,最后返回 $node$ 的值。

对于 $put(key, value)$ 操作:

我们首先判断 $capacity$ 是否为 $0$,如果为 $0$ 则直接返回;

否则判断 $map$ 中是否存在键 $key$,如果存在则从 $map$ 中获取缓存节点 $node$,更新 $node$ 的值为 $value$,并将 $node$ 的使用频率加 $1$,最后返回 $node$ 的值;

如果不存在则判断 $map$ 的长度是否等于 $capacity$,如果等于 $capacity$ 则从 $freqMap$ 中获取使用频率最小的双向链表 $list$,从 $list$ 中删除最后一个节点,并且移除该节点对应的键值对。然后创建新的缓存节点 $node$,将 $node$ 的使用频率设置为 $1$,将 $node$ 添加到 $map$ 和 $freqMap$ 中,最后将 $minFreq$ 设置为 $1$。

时间复杂度方面,操作 $get$ 和 $put$ 的时间复杂度都是 $O(1)$。空间复杂度 $O(n)$,其中 $n$ 为缓存的容量。

class Node:
  def __init__(self, key: int, value: int) -> None:
    self.key = key
    self.value = value
    self.freq = 1
    self.prev = None
    self.next = None


class DoublyLinkedList:
  def __init__(self) -> None:
    self.head = Node(-1, -1)
    self.tail = Node(-1, -1)
    self.head.next = self.tail
    self.tail.prev = self.head

  def add_first(self, node: Node) -> None:
    node.prev = self.head
    node.next = self.head.next
    self.head.next.prev = node
    self.head.next = node

  def remove(self, node: Node) -> Node:
    node.next.prev = node.prev
    node.prev.next = node.next
    node.next, node.prev = None, None
    return node

  def remove_last(self) -> Node:
    return self.remove(self.tail.prev)

  def is_empty(self) -> bool:
    return self.head.next == self.tail


class LFUCache:
  def __init__(self, capacity: int):
    self.capacity = capacity
    self.min_freq = 0
    self.map = defaultdict(Node)
    self.freq_map = defaultdict(DoublyLinkedList)

  def get(self, key: int) -> int:
    if self.capacity == 0 or key not in self.map:
      return -1
    node = self.map[key]
    self.incr_freq(node)
    return node.value

  def put(self, key: int, value: int) -> None:
    if self.capacity == 0:
      return
    if key in self.map:
      node = self.map[key]
      node.value = value
      self.incr_freq(node)
      return
    if len(self.map) == self.capacity:
      ls = self.freq_map[self.min_freq]
      node = ls.remove_last()
      self.map.pop(node.key)
    node = Node(key, value)
    self.add_node(node)
    self.map[key] = node
    self.min_freq = 1

  def incr_freq(self, node: Node) -> None:
    freq = node.freq
    ls = self.freq_map[freq]
    ls.remove(node)
    if ls.is_empty():
      self.freq_map.pop(freq)
      if freq == self.min_freq:
        self.min_freq += 1
    node.freq += 1
    self.add_node(node)

  def add_node(self, node: Node) -> None:
    freq = node.freq
    ls = self.freq_map[freq]
    ls.add_first(node)
    self.freq_map[freq] = ls


# Your LFUCache object will be instantiated and called as such:
# obj = LFUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
class LFUCache {

  private final Map<Integer, Node> map;
  private final Map<Integer, DoublyLinkedList> freqMap;
  private final int capacity;
  private int minFreq;

  public LFUCache(int capacity) {
    this.capacity = capacity;
    map = new HashMap<>(capacity, 1);
    freqMap = new HashMap<>();
  }

  public int get(int key) {
    if (capacity == 0) {
      return -1;
    }
    if (!map.containsKey(key)) {
      return -1;
    }
    Node node = map.get(key);
    incrFreq(node);
    return node.value;
  }

  public void put(int key, int value) {
    if (capacity == 0) {
      return;
    }
    if (map.containsKey(key)) {
      Node node = map.get(key);
      node.value = value;
      incrFreq(node);
      return;
    }
    if (map.size() == capacity) {
      DoublyLinkedList list = freqMap.get(minFreq);
      map.remove(list.removeLast().key);
    }
    Node node = new Node(key, value);
    addNode(node);
    map.put(key, node);
    minFreq = 1;
  }

  private void incrFreq(Node node) {
    int freq = node.freq;
    DoublyLinkedList list = freqMap.get(freq);
    list.remove(node);
    if (list.isEmpty()) {
      freqMap.remove(freq);
      if (freq == minFreq) {
        minFreq++;
      }
    }
    node.freq++;
    addNode(node);
  }

  private void addNode(Node node) {
    int freq = node.freq;
    DoublyLinkedList list = freqMap.getOrDefault(freq, new DoublyLinkedList());
    list.addFirst(node);
    freqMap.put(freq, list);
  }

  private static class Node {
    int key;
    int value;
    int freq;
    Node prev;
    Node next;

    Node(int key, int value) {
      this.key = key;
      this.value = value;
      this.freq = 1;
    }
  }

  private static class DoublyLinkedList {

    private final Node head;
    private final Node tail;

    public DoublyLinkedList() {
      head = new Node(-1, -1);
      tail = new Node(-1, -1);
      head.next = tail;
      tail.prev = head;
    }

    public void addFirst(Node node) {
      node.prev = head;
      node.next = head.next;
      head.next.prev = node;
      head.next = node;
    }

    public Node remove(Node node) {
      node.next.prev = node.prev;
      node.prev.next = node.next;
      node.next = null;
      node.prev = null;
      return node;
    }

    public Node removeLast() {
      return remove(tail.prev);
    }

    public boolean isEmpty() {
      return head.next == tail;
    }
  }
}
class Node {
public:
  int key;
  int value;
  int freq;
  Node* prev;
  Node* next;
  Node(int key, int value) {
    this->key = key;
    this->value = value;
    this->freq = 1;
    this->prev = nullptr;
    this->next = nullptr;
  }
};

class DoublyLinkedList {
public:
  Node* head;
  Node* tail;
  DoublyLinkedList() {
    this->head = new Node(-1, -1);
    this->tail = new Node(-1, -1);
    this->head->next = this->tail;
    this->tail->prev = this->head;
  }
  void addFirst(Node* node) {
    node->prev = this->head;
    node->next = this->head->next;
    this->head->next->prev = node;
    this->head->next = node;
  }
  Node* remove(Node* node) {
    node->next->prev = node->prev;
    node->prev->next = node->next;
    node->next = nullptr;
    node->prev = nullptr;
    return node;
  }
  Node* removeLast() {
    return remove(this->tail->prev);
  }
  bool isEmpty() {
    return this->head->next == this->tail;
  }
};

class LFUCache {
public:
  LFUCache(int capacity) {
    this->capacity = capacity;
    this->minFreq = 0;
  }

  int get(int key) {
    if (capacity == 0 || map.find(key) == map.end()) {
      return -1;
    }
    Node* node = map[key];
    incrFreq(node);
    return node->value;
  }

  void put(int key, int value) {
    if (capacity == 0) {
      return;
    }
    if (map.find(key) != map.end()) {
      Node* node = map[key];
      node->value = value;
      incrFreq(node);
      return;
    }
    if (map.size() == capacity) {
      DoublyLinkedList* list = freqMap[minFreq];
      Node* node = list->removeLast();
      map.erase(node->key);
    }
    Node* node = new Node(key, value);
    addNode(node);
    map[key] = node;
    minFreq = 1;
  }

private:
  int capacity;
  int minFreq;
  unordered_map<int, Node*> map;
  unordered_map<int, DoublyLinkedList*> freqMap;

  void incrFreq(Node* node) {
    int freq = node->freq;
    DoublyLinkedList* list = freqMap[freq];
    list->remove(node);
    if (list->isEmpty()) {
      freqMap.erase(freq);
      if (freq == minFreq) {
        minFreq++;
      }
    }
    node->freq++;
    addNode(node);
  }

  void addNode(Node* node) {
    int freq = node->freq;
    if (freqMap.find(freq) == freqMap.end()) {
      freqMap[freq] = new DoublyLinkedList();
    }
    DoublyLinkedList* list = freqMap[freq];
    list->addFirst(node);
    freqMap[freq] = list;
  }
};

/**
 * Your LFUCache object will be instantiated and called as such:
 * LFUCache* obj = new LFUCache(capacity);
 * int param_1 = obj->get(key);
 * obj->put(key,value);
 */
type LFUCache struct {
  cache  map[int]*node
  freqMap  map[int]*list
  minFreq  int
  capacity int
}

func Constructor(capacity int) LFUCache {
  return LFUCache{
    cache:  make(map[int]*node),
    freqMap:  make(map[int]*list),
    capacity: capacity,
  }
}

func (this *LFUCache) Get(key int) int {
  if this.capacity == 0 {
    return -1
  }

  n, ok := this.cache[key]
  if !ok {
    return -1
  }

  this.incrFreq(n)
  return n.val
}

func (this *LFUCache) Put(key int, value int) {
  if this.capacity == 0 {
    return
  }

  n, ok := this.cache[key]
  if ok {
    n.val = value
    this.incrFreq(n)
    return
  }

  if len(this.cache) == this.capacity {
    l := this.freqMap[this.minFreq]
    delete(this.cache, l.removeBack().key)
  }
  n = &node{key: key, val: value, freq: 1}
  this.addNode(n)
  this.cache[key] = n
  this.minFreq = 1
}

func (this *LFUCache) incrFreq(n *node) {
  l := this.freqMap[n.freq]
  l.remove(n)
  if l.empty() {
    delete(this.freqMap, n.freq)
    if n.freq == this.minFreq {
      this.minFreq++
    }
  }
  n.freq++
  this.addNode(n)
}

func (this *LFUCache) addNode(n *node) {
  l, ok := this.freqMap[n.freq]
  if !ok {
    l = newList()
    this.freqMap[n.freq] = l
  }
  l.pushFront(n)
}

type node struct {
  key  int
  val  int
  freq int
  prev *node
  next *node
}

type list struct {
  head *node
  tail *node
}

func newList() *list {
  head := new(node)
  tail := new(node)
  head.next = tail
  tail.prev = head
  return &list{
    head: head,
    tail: tail,
  }
}

func (l *list) pushFront(n *node) {
  n.prev = l.head
  n.next = l.head.next
  l.head.next.prev = n
  l.head.next = n
}

func (l *list) remove(n *node) {
  n.prev.next = n.next
  n.next.prev = n.prev
  n.next = nil
  n.prev = nil
}

func (l *list) removeBack() *node {
  n := l.tail.prev
  l.remove(n)
  return n
}

func (l *list) empty() bool {
  return l.head.next == l.tail
}
use std::cell::RefCell;
use std::collections::HashMap;
use std::rc::Rc;

struct Node {
  key: i32,
  value: i32,
  freq: i32,
  prev: Option<Rc<RefCell<Node>>>,
  next: Option<Rc<RefCell<Node>>>,
}

impl Node {
  fn new(key: i32, value: i32) -> Self {
    Self {
      key,
      value,
      freq: 1,
      prev: None,
      next: None,
    }
  }
}

struct LinkedList {
  head: Option<Rc<RefCell<Node>>>,
  tail: Option<Rc<RefCell<Node>>>,
}

impl LinkedList {
  fn new() -> Self {
    Self {
      head: None,
      tail: None,
    }
  }

  fn push_front(&mut self, node: &Rc<RefCell<Node>>) {
    match self.head.take() {
      Some(head) => {
        head.borrow_mut().prev = Some(Rc::clone(node));
        node.borrow_mut().prev = None;
        node.borrow_mut().next = Some(head);
        self.head = Some(Rc::clone(node));
      }
      None => {
        node.borrow_mut().prev = None;
        node.borrow_mut().next = None;
        self.head = Some(Rc::clone(node));
        self.tail = Some(Rc::clone(node));
      }
    };
  }

  fn remove(&mut self, node: &Rc<RefCell<Node>>) {
    match (node.borrow().prev.as_ref(), node.borrow().next.as_ref()) {
      (None, None) => {
        self.head = None;
        self.tail = None;
      }
      (None, Some(next)) => {
        self.head = Some(Rc::clone(next));
        next.borrow_mut().prev = None;
      }
      (Some(prev), None) => {
        self.tail = Some(Rc::clone(prev));
        prev.borrow_mut().next = None;
      }
      (Some(prev), Some(next)) => {
        next.borrow_mut().prev = Some(Rc::clone(prev));
        prev.borrow_mut().next = Some(Rc::clone(next));
      }
    };
  }

  fn pop_back(&mut self) -> Option<Rc<RefCell<Node>>> {
    match self.tail.take() {
      Some(tail) => {
        self.remove(&tail);
        Some(tail)
      }
      None => None,
    }
  }

  fn is_empty(&self) -> bool {
    self.head.is_none()
  }
}

struct LFUCache {
  cache: HashMap<i32, Rc<RefCell<Node>>>,
  freq_map: HashMap<i32, LinkedList>,
  min_freq: i32,
  capacity: usize,
}

/**
 * `&self` means the method takes an immutable reference.
 * If you need a mutable reference, change it to `&mut self` instead.
 */
impl LFUCache {
  fn new(capacity: i32) -> Self {
    Self {
      cache: HashMap::new(),
      freq_map: HashMap::new(),
      min_freq: 0,
      capacity: capacity as usize,
    }
  }

  fn get(&mut self, key: i32) -> i32 {
    if self.capacity == 0 {
      return -1;
    }

    match self.cache.get(&key) {
      Some(node) => {
        let node = Rc::clone(node);
        self.incr_freq(&node);
        let value = node.borrow().value;
        value
      }
      None => -1,
    }
  }

  fn put(&mut self, key: i32, value: i32) {
    if self.capacity == 0 {
      return;
    }

    match self.cache.get(&key) {
      Some(node) => {
        let node = Rc::clone(node);
        node.borrow_mut().value = value;
        self.incr_freq(&node);
      }
      None => {
        if self.cache.len() == self.capacity {
          let list = self.freq_map.get_mut(&self.min_freq).unwrap();
          self.cache.remove(&list.pop_back().unwrap().borrow().key);
        }
        let node = Rc::new(RefCell::new(Node::new(key, value)));
        self.add_node(&node);
        self.cache.insert(key, node);
        self.min_freq = 1;
      }
    };
  }

  fn incr_freq(&mut self, node: &Rc<RefCell<Node>>) {
    let freq = node.borrow().freq;
    let list = self.freq_map.get_mut(&freq).unwrap();
    list.remove(node);
    if list.is_empty() {
      self.freq_map.remove(&freq);
      if freq == self.min_freq {
        self.min_freq += 1;
      }
    }
    node.borrow_mut().freq += 1;
    self.add_node(node);
  }

  fn add_node(&mut self, node: &Rc<RefCell<Node>>) {
    let freq = node.borrow().freq;
    match self.freq_map.get_mut(&freq) {
      Some(list) => {
        list.push_front(node);
      }
      None => {
        let mut list = LinkedList::new();
        list.push_front(node);
        self.freq_map.insert(node.borrow().freq, list);
      }
    };
  }
}/**
 * Your LFUCache object will be instantiated and called as such:
 * let obj = LFUCache::new(capacity);
 * let ret_1: i32 = obj.get(key);
 * obj.put(key, value);
 */

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文