第零章、必读系列
- 学习算法和刷题的框架思维
- 学习数据结构和算法读什么书
- 动态规划解题框架
- 动态规划答疑篇
- 回溯算法解题框架
- 为了学会二分查找,我写了首诗
- 滑动窗口解题框架
- 双指针技巧解题框架
- Linux 的进程、线程、文件描述符是什么
- Git / SQL / 正则表达式的在线练习平台
- 动态规划设计:最长递增子序列
第一章、动态规划系列
- 编辑距离
- 经典动态规划问题:高楼扔鸡蛋
- 经典动态规划问题:高楼扔鸡蛋(进阶)
- 动态规划之子序列问题解题模板
- 动态规划之博弈问题
- 贪心算法之区间调度问题
- 动态规划之KMP字符匹配算法
- 团灭 LeetCode 股票买卖问题
- 团灭 LeetCode 打家劫舍问题
- 动态规划之四键键盘
- 动态规划之正则表达
- 最长公共子序列
第二章、数据结构系列
第三章、算法思维系列
- 算法学习之路
- 回溯算法团灭排列、组合、子集问题
- twoSum 问题的核心思想
- 常用的位操作
- 拆解复杂问题:实现计算器
- 烧饼排序
- 前缀和技巧
- 字符串乘法
- FloodFill 算法详解及应用
- 区间调度之区间合并问题
- 区间调度之区间交集问题
- 信封嵌套问题
- 几个反直觉的概率问题
- 洗牌算法
- 递归详解
第四章、高频面试系列
- 如何高效寻找素数
- 如何运用二分查找算法
- 如何高效解决接雨水问题
- 如何去除有序数组的重复元素
- 如何寻找最长回文子串
- 如何 k 个一组反转链表
- 如何判定括号合法性
- 如何寻找消失的元素
- 如何寻找缺失和重复的元素
- 如何判断回文链表
- 如何在无限序列中随机抽取元素
- 如何调度考生的座位
- Union-Find 算法详解
- Union-Find 算法应用
- 一行代码就能解决的算法题
- 二分查找高效判定子序列
第五章、计算机技术
特殊数据结构:单调队列
前文讲了一种特殊的数据结构「单调栈」monotonic stack,解决了一类问题「Next Greater Number」,本文写一个类似的数据结构「单调队列」。
也许这种数据结构的名字你没听过,其实没啥难的,就是一个「队列」,只是使用了一点巧妙的方法,使得队列中的元素单调递增(或递减)。这个数据结构有什么用?可以解决滑动窗口的一系列问题。
看一道 LeetCode 题目,难度 hard:
一、搭建解题框架
这道题不复杂,难点在于如何在 O(1) 时间算出每个「窗口」中的最大值,使得整个算法在线性时间完成。在之前我们探讨过类似的场景,得到一个结论:
在一堆数字中,已知最值,如果给这堆数添加一个数,那么比较一下就可以很快算出最值;但如果减少一个数,就不一定能很快得到最值了,而要遍历所有数重新找最值。
回到这道题的场景,每个窗口前进的时候,要添加一个数同时减少一个数,所以想在 O(1) 的时间得出新的最值,就需要「单调队列」这种特殊的数据结构来辅助了。
一个普通的队列一定有这两个操作:
class Queue {
void push(int n);
// 或 enqueue,在队尾加入元素 n
void pop();
// 或 dequeue,删除队头元素
}
一个「单调队列」的操作也差不多:
class MonotonicQueue {
// 在队尾添加元素 n
void push(int n);
// 返回当前队列中的最大值
int max();
// 队头元素如果是 n,删除它
void pop(int n);
}
当然,这几个 API 的实现方法肯定跟一般的 Queue 不一样,不过我们暂且不管,而且认为这几个操作的时间复杂度都是 O(1),先把这道「滑动窗口」问题的解答框架搭出来:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
MonotonicQueue window;
vector<int> res;
for (int i = 0; i < nums.size(); i++) {
if (i < k - 1) { //先把窗口的前 k - 1 填满
window.push(nums[i]);
} else { // 窗口开始向前滑动
window.push(nums[i]);
res.push_back(window.max());
window.pop(nums[i - k + 1]);
// nums[i - k + 1] 就是窗口最后的元素
}
}
return res;
}
这个思路很简单,能理解吧?下面我们开始重头戏,单调队列的实现。
二、实现单调队列数据结构
首先我们要认识另一种数据结构:deque,即双端队列。很简单:
class deque {
// 在队头插入元素 n
void push_front(int n);
// 在队尾插入元素 n
void push_back(int n);
// 在队头删除元素
void pop_front();
// 在队尾删除元素
void pop_back();
// 返回队头元素
int front();
// 返回队尾元素
int back();
}
而且,这些操作的复杂度都是 O(1)。这其实不是啥稀奇的数据结构,用链表作为底层结构的话,很容易实现这些功能。
「单调队列」的核心思路和「单调栈」类似。单调队列的 push 方法依然在队尾添加元素,但是要把前面比新元素小的元素都删掉:
class MonotonicQueue {
private:
deque<int> data;
public:
void push(int n) {
while (!data.empty() && data.back() < n)
data.pop_back();
data.push_back(n);
}
};
你可以想象,加入数字的大小代表人的体重,把前面体重不足的都压扁了,直到遇到更大的量级才停住。
如果每个元素被加入时都这样操作,最终单调队列中的元素大小就会保持一个单调递减的顺序,因此我们的 max() API 可以可以这样写:
int max() {
return data.front();
}
pop() API 在队头删除元素 n,也很好写:
void pop(int n) {
if (!data.empty() && data.front() == n)
data.pop_front();
}
之所以要判断 data.front() == n
,是因为我们想删除的队头元素 n 可能已经被「压扁」了,这时候就不用删除了:
至此,单调队列设计完毕,看下完整的解题代码:
class MonotonicQueue {
private:
deque<int> data;
public:
void push(int n) {
while (!data.empty() && data.back() < n)
data.pop_back();
data.push_back(n);
}
int max() { return data.front(); }
void pop(int n) {
if (!data.empty() && data.front() == n)
data.pop_front();
}
};
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
MonotonicQueue window;
vector<int> res;
for (int i = 0; i < nums.size(); i++) {
if (i < k - 1) { //先填满窗口的前 k - 1
window.push(nums[i]);
} else { // 窗口向前滑动
window.push(nums[i]);
res.push_back(window.max());
window.pop(nums[i - k + 1]);
}
}
return res;
}
三、算法复杂度分析
读者可能疑惑,push 操作中含有 while 循环,时间复杂度不是 O(1) 呀,那么本算法的时间复杂度应该不是线性时间吧?
单独看 push 操作的复杂度确实不是 O(1),但是算法整体的复杂度依然是 O(N) 线性时间。要这样想,nums 中的每个元素最多被 push_back 和 pop_back 一次,没有任何多余操作,所以整体的复杂度还是 O(N)。
空间复杂度就很简单了,就是窗口的大小 O(k)。
四、最后总结
有的读者可能觉得「单调队列」和「优先级队列」比较像,实际上差别很大的。
单调队列在添加元素的时候靠删除元素保持队列的单调性,相当于抽取出某个函数中单调递增(或递减)的部分;而优先级队列(二叉堆)相当于自动排序,差别大了去了。
赶紧去拿下 LeetCode 第 239 道题吧~
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论