返回介绍

solution / 1600-1699 / 1612.Check If Two Expression Trees are Equivalent / README

发布于 2024-06-17 01:03:16 字数 9200 浏览 0 评论 0 收藏 0

1612. 检查两棵二叉表达式树是否等价

English Version

题目描述

二叉表达式树是一种表达算术表达式的二叉树。二叉表达式树中的每一个节点都有零个或两个子节点。 叶节点(有 0 个子节点的节点)表示操作数,非叶节点(有 2 个子节点的节点)表示运算符。在本题中,我们只考虑 '+' 运算符(即加法)。

给定两棵二叉表达式树的根节点 root1 和 root2 。_如果两棵二叉表达式树等价_,返回 true ,否则返回 false 。

当两棵二叉搜索树中的变量取任意值,分别求得的值都相等时,我们称这两棵二叉表达式树是等价的。

 

示例 1:

输入: root1 = [x], root2 = [x]
输出: true

示例 2:

输入:root1 = [+,a,+,null,null,b,c], root2 = [+,+,a,b,c]
输出:true
解释:a + (b + c) == (b + c) + a

示例 3:

输入: root1 = [+,a,+,null,null,b,c], root2 = [+,+,a,b,d]
输出: false
解释: a + (b + c) != (b + d) + a

 

提示:

  • 两棵树中的节点个数相等,且节点个数为范围 [1, 4999] 内的奇数。
  • Node.val 是 '+' 或小写英文字母。
  • 给定的树保证是有效的二叉表达式树。

 

进阶:当你的答案需同时支持 '-' 运算符(减法)时,你该如何修改你的答案

解法

方法一:递归

我们定义一个计数器 $cnt$,用于统计每个字母出现的次数。

然后我们分别对两棵二叉表达式树进行深度优先搜索,如果字母出现在左子树,则 $cnt$ 中对应的字母的值加 $1$,如果出现在右子树,则 $cnt$ 中对应的字母的值减 $1$。

最后,我们遍历 $cnt$,如果所有字母的值都为 $0$,则返回 true,否则返回 false

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉表达式树的节点个数。

# Definition for a binary tree node.
# class Node(object):
#   def __init__(self, val=" ", left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def checkEquivalence(self, root1: 'Node', root2: 'Node') -> bool:
    def dfs(root, v):
      if root is None:
        return
      if root.val != '+':
        cnt[root.val] += v
      dfs(root.left, v)
      dfs(root.right, v)

    cnt = Counter()
    dfs(root1, 1)
    dfs(root2, -1)
    return all(x == 0 for x in cnt.values())
/**
 * Definition for a binary tree node.
 * class Node {
 *   char val;
 *   Node left;
 *   Node right;
 *   Node() {this.val = ' ';}
 *   Node(char val) { this.val = val; }
 *   Node(char val, Node left, Node right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  private int[] cnt = new int[26];

  public boolean checkEquivalence(Node root1, Node root2) {
    dfs(root1, 1);
    dfs(root2, -1);
    for (int x : cnt) {
      if (x != 0) {
        return false;
      }
    }
    return true;
  }

  private void dfs(Node root, int v) {
    if (root == null) {
      return;
    }
    if (root.val != '+') {
      cnt[root.val - 'a'] += v;
    }
    dfs(root.left, v);
    dfs(root.right, v);
  }
}
/**
 * Definition for a binary tree node.
 * struct Node {
 *   char val;
 *   Node *left;
 *   Node *right;
 *   Node() : val(' '), left(nullptr), right(nullptr) {}
 *   Node(char x) : val(x), left(nullptr), right(nullptr) {}
 *   Node(char x, Node *left, Node *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  bool checkEquivalence(Node* root1, Node* root2) {
    int cnt[26]{};
    function<void(Node*, int)> dfs = [&](Node* root, int v) {
      if (!root) {
        return;
      }
      if (root->val != '+') {
        cnt[root->val - 'a'] += v;
      }
      dfs(root->left, v);
      dfs(root->right, v);
    };
    dfs(root1, 1);
    dfs(root2, -1);
    for (int& x : cnt) {
      if (x) {
        return false;
      }
    }
    return true;
  }
};
/**
 * Definition for a binary tree node.
 * function Node(val, left, right) {
 *   this.val = (val===undefined ? " " : val)
 *   this.left = (left===undefined ? null : left)
 *   this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {Node} root1
 * @param {Node} root2
 * @return {boolean}
 */
var checkEquivalence = function (root1, root2) {
  const cnt = new Array(26).fill(0);
  const dfs = (root, v) => {
    if (!root) {
      return;
    }
    if (root.val !== '+') {
      cnt[root.val.charCodeAt(0) - 'a'.charCodeAt(0)] += v;
    }
    dfs(root.left, v);
    dfs(root.right, v);
  };
  dfs(root1, 1);
  dfs(root2, -1);
  for (const x of cnt) {
    if (x) {
      return false;
    }
  }
  return true;
};

方法二

# Definition for a binary tree node.
# class Node(object):
#   def __init__(self, val=" ", left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def checkEquivalence(self, root1: 'Node', root2: 'Node') -> bool:
    def dfs(root):
      cnt = [0] * 26
      if root is None:
        return cnt
      if root.val in '+-':
        l, r = dfs(root.left), dfs(root.right)
        k = 1 if root.val == '+' else -1
        for i in range(26):
          cnt[i] += l[i] + r[i] * k
      else:
        cnt[ord(root.val) - ord('a')] += 1
      return cnt

    return dfs(root1) == dfs(root2)
/**
 * Definition for a binary tree node.
 * class Node {
 *   char val;
 *   Node left;
 *   Node right;
 *   Node() {this.val = ' ';}
 *   Node(char val) { this.val = val; }
 *   Node(char val, Node left, Node right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public boolean checkEquivalence(Node root1, Node root2) {
    int[] cnt1 = dfs(root1);
    int[] cnt2 = dfs(root2);
    for (int i = 0; i < 26; ++i) {
      if (cnt1[i] != cnt2[i]) {
        return false;
      }
    }
    return true;
  }

  private int[] dfs(Node root) {
    int[] cnt = new int[26];
    if (root == null) {
      return cnt;
    }
    if (root.val == '+' || root.val == '-') {
      int[] l = dfs(root.left);
      int[] r = dfs(root.right);
      int k = root.val == '+' ? 1 : -1;
      for (int i = 0; i < 26; ++i) {
        cnt[i] += l[i] + r[i] * k;
      }
    } else {
      cnt[root.val - 'a']++;
    }
    return cnt;
  }
}
/**
 * Definition for a binary tree node.
 * struct Node {
 *   char val;
 *   Node *left;
 *   Node *right;
 *   Node() : val(' '), left(nullptr), right(nullptr) {}
 *   Node(char x) : val(x), left(nullptr), right(nullptr) {}
 *   Node(char x, Node *left, Node *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  bool checkEquivalence(Node* root1, Node* root2) {
    function<vector<int>(Node*)> dfs = [&](Node* root) -> vector<int> {
      vector<int> cnt(26);
      if (!root) {
        return cnt;
      }
      if (root->val == '+' || root->val == '-') {
        auto l = dfs(root->left);
        auto r = dfs(root->right);
        int k = root->val == '+' ? 1 : -1;
        for (int i = 0; i < 26; ++i) {
          cnt[i] += l[i] + r[i] * k;
        }
      } else {
        cnt[root->val - 'a']++;
      }
      return cnt;
    };
    return dfs(root1) == dfs(root2);
  }
};
/**
 * Definition for a binary tree node.
 * function Node(val, left, right) {
 *   this.val = (val===undefined ? " " : val)
 *   this.left = (left===undefined ? null : left)
 *   this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {Node} root1
 * @param {Node} root2
 * @return {boolean}
 */
var checkEquivalence = function (root1, root2) {
  const dfs = root => {
    const cnt = new Array(26).fill(0);
    if (!root) {
      return cnt;
    }
    if (root.val === '+' || root.val === '-') {
      const l = dfs(root.left);
      const r = dfs(root.right);
      const k = root.val === '+' ? 1 : -1;
      for (let i = 0; i < 26; ++i) {
        cnt[i] = l[i] + k * r[i];
      }
    } else {
      cnt[root.val.charCodeAt(0) - 'a'.charCodeAt(0)]++;
    }
    return cnt;
  };
  const cnt1 = dfs(root1);
  const cnt2 = dfs(root2);
  for (let i = 0; i < 26; ++i) {
    if (cnt1[i] !== cnt2[i]) {
      return false;
    }
  }
  return true;
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文