返回介绍

solution / 1400-1499 / 1498.Number of Subsequences That Satisfy the Given Sum Condition / README

发布于 2024-06-17 01:03:19 字数 4424 浏览 0 评论 0 收藏 0

1498. 满足条件的子序列数目

English Version

题目描述

给你一个整数数组 nums 和一个整数 target

请你统计并返回 nums 中能满足其最小元素与最大元素的 小于或等于 target非空 子序列的数目。

由于答案可能很大,请将结果对

 109 + 7 取余后返回。

 

示例 1:

输入:nums = [3,5,6,7], target = 9
输出:4
解释:有 4 个子序列满足该条件。
[3] -> 最小元素 + 最大元素 <= target (3 + 3 <= 9)
[3,5] -> (3 + 5 <= 9)
[3,5,6] -> (3 + 6 <= 9)
[3,6] -> (3 + 6 <= 9)

示例 2:

输入:nums = [3,3,6,8], target = 10
输出:6
解释:有 6 个子序列满足该条件。(nums 中可以有重复数字)
[3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6]

示例 3:

输入:nums = [2,3,3,4,6,7], target = 12
输出:61
解释:共有 63 个非空子序列,其中 2 个不满足条件([6,7], [7])
有效序列总数为(63 - 2 = 61)

 

提示:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 106
  • 1 <= target <= 106

解法

方法一:排序 + 枚举贡献 + 二分查找

由于题目中描述的是子序列,并且涉及到最小元素与最大元素的和,因此我们可以先对数组 nums 进行排序。

然后我们枚举最小元素 $nums[i]$,对于每个 $nums[i]$,我们可以在 $nums[i + 1]$ 到 $nums[n - 1]$ 中找到最大元素 $nums[j]$,使得 $nums[i] + nums[j] \leq target$,此时满足条件的子序列数目为 $2^{j - i}$,其中 $2^{j - i}$ 表示从 $nums[i + 1]$ 到 $nums[j]$ 的所有子序列的数目。我们将所有的子序列数目累加即可。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 nums 的长度。

class Solution:
  def numSubseq(self, nums: List[int], target: int) -> int:
    mod = 10**9 + 7
    nums.sort()
    n = len(nums)
    f = [1] + [0] * n
    for i in range(1, n + 1):
      f[i] = f[i - 1] * 2 % mod
    ans = 0
    for i, x in enumerate(nums):
      if x * 2 > target:
        break
      j = bisect_right(nums, target - x, i + 1) - 1
      ans = (ans + f[j - i]) % mod
    return ans
class Solution {
  public int numSubseq(int[] nums, int target) {
    Arrays.sort(nums);
    final int mod = (int) 1e9 + 7;
    int n = nums.length;
    int[] f = new int[n + 1];
    f[0] = 1;
    for (int i = 1; i <= n; ++i) {
      f[i] = (f[i - 1] * 2) % mod;
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      if (nums[i] * 2L > target) {
        break;
      }
      int j = search(nums, target - nums[i], i + 1) - 1;
      ans = (ans + f[j - i]) % mod;
    }
    return ans;
  }

  private int search(int[] nums, int x, int left) {
    int right = nums.length;
    while (left < right) {
      int mid = (left + right) >> 1;
      if (nums[mid] > x) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    return left;
  }
}
class Solution {
public:
  int numSubseq(vector<int>& nums, int target) {
    sort(nums.begin(), nums.end());
    const int mod = 1e9 + 7;
    int n = nums.size();
    int f[n + 1];
    f[0] = 1;
    for (int i = 1; i <= n; ++i) {
      f[i] = (f[i - 1] * 2) % mod;
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      if (nums[i] * 2L > target) {
        break;
      }
      int j = upper_bound(nums.begin() + i + 1, nums.end(), target - nums[i]) - nums.begin() - 1;
      ans = (ans + f[j - i]) % mod;
    }
    return ans;
  }
};
func numSubseq(nums []int, target int) (ans int) {
  sort.Ints(nums)
  n := len(nums)
  f := make([]int, n+1)
  f[0] = 1
  const mod int = 1e9 + 7
  for i := 1; i <= n; i++ {
    f[i] = f[i-1] * 2 % mod
  }
  for i, x := range nums {
    if x*2 > target {
      break
    }
    j := sort.SearchInts(nums[i+1:], target-x+1) + i
    ans = (ans + f[j-i]) % mod
  }
  return
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文