返回介绍

solution / 2100-2199 / 2188.Minimum Time to Finish the Race / README

发布于 2024-06-17 01:03:09 字数 6621 浏览 0 评论 0 收藏 0

2188. 完成比赛的最少时间

English Version

题目描述

给你一个下标从 0 开始的二维整数数组 tires ,其中 tires[i] = [fi, ri] 表示第 i 种轮胎如果连续使用,第 x 圈需要耗时 fi * ri(x-1) 秒。

  • 比方说,如果 fi = 3 且 ri = 2 ,且一直使用这种类型的同一条轮胎,那么该轮胎完成第 1 圈赛道耗时 3 秒,完成第 2 圈耗时 3 * 2 = 6 秒,完成第 3 圈耗时 3 * 22 = 12 秒,依次类推。

同时给你一个整数 changeTime 和一个整数 numLaps 。

比赛总共包含 numLaps 圈,你可以选择 任意 一种轮胎开始比赛。每一种轮胎都有 无数条 。每一圈后,你可以选择耗费 changeTime 秒 换成 任意一种轮胎(也可以换成当前种类的新轮胎)。

请你返回完成比赛需要耗费的 最少 时间。

 

示例 1:

输入:tires = [[2,3],[3,4]], changeTime = 5, numLaps = 4
输出:21
解释:
第 1 圈:使用轮胎 0 ,耗时 2 秒。
第 2 圈:继续使用轮胎 0 ,耗时 2 * 3 = 6 秒。
第 3 圈:耗费 5 秒换一条新的轮胎 0 ,然后耗时 2 秒完成这一圈。
第 4 圈:继续使用轮胎 0 ,耗时 2 * 3 = 6 秒。
总耗时 = 2 + 6 + 5 + 2 + 6 = 21 秒。
完成比赛的最少时间为 21 秒。

示例 2:

输入:tires = [[1,10],[2,2],[3,4]], changeTime = 6, numLaps = 5
输出:25
解释:
第 1 圈:使用轮胎 1 ,耗时 2 秒。
第 2 圈:继续使用轮胎 1 ,耗时 2 * 2 = 4 秒。
第 3 圈:耗时 6 秒换一条新的轮胎 1 ,然后耗时 2 秒完成这一圈。
第 4 圈:继续使用轮胎 1 ,耗时 2 * 2 = 4 秒。
第 5 圈:耗时 6 秒换成轮胎 0 ,然后耗时 1 秒完成这一圈。
总耗时 = 2 + 4 + 6 + 2 + 4 + 6 + 1 = 25 秒。
完成比赛的最少时间为 25 秒。

 

提示:

  • 1 <= tires.length <= 105
  • tires[i].length == 2
  • 1 <= fi, changeTime <= 105
  • 2 <= ri <= 105
  • 1 <= numLaps <= 1000

解法

方法一:预处理 + 动态规划

我们注意到,连续使用同一个轮胎 $(f, r)$ 跑 $i$ 圈,那么第 $i$ 圈的耗时不应该超过 $changeTime + f$,否则我们可以在第 $i$ 圈的时候换轮胎,这样总耗时会更少。即:

$$ f \times r^{i-1} \leq changeTime + f $$

我们可以求出满足上式的最大的 $i$,要使得 $i$ 最大,那么 $f$ 和 $r$ 应该尽可能小,根据题目的数据范围,我们取 $f=1$, $r=2$,那么 $2^{i-1} \leq changeTime + 1$,即 $i \leq \log_2(changeTime + 1) + 1$。根据这个结论,以及题目中 $changeTime$ 的数据范围,我们可以知道 $i$ 最大为 $17$。

我们定义 $cost[i]$ 表示使用同一个轮胎跑 $i$ 圈的最小耗时,那么我们可以预处理出 $cost$ 数组,然后使用动态规划求解即可。定义 $f[i]$ 表示跑 $i$ 圈的最小耗时,那么我们可以得到状态转移方程:

$$ f[i] = (\min_{1 \leq j \leq \min(17, i)} f[i-j] + cost[j]) + changeTime $$

初始时 $f[0] = -changeTime$,最终答案为 $f[numLaps]$。

时间复杂度 $O((n + numLaps) \times \log T_{max})$,空间复杂度 $O(n + \log T_{max})$,其中 $T_{max}$ 是题目中 $f_i$, $r_i$ 和 $changeTime$ 的最大值。本题中 $\log T_{max} \approx 17$。

class Solution:
  def minimumFinishTime(
    self, tires: List[List[int]], changeTime: int, numLaps: int
  ) -> int:
    cost = [inf] * 18
    for f, r in tires:
      i, s, t = 1, 0, f
      while t <= changeTime + f:
        s += t
        cost[i] = min(cost[i], s)
        t *= r
        i += 1
    f = [inf] * (numLaps + 1)
    f[0] = -changeTime
    for i in range(1, numLaps + 1):
      for j in range(1, min(18, i + 1)):
        f[i] = min(f[i], f[i - j] + cost[j])
      f[i] += changeTime
    return f[numLaps]
class Solution {
  public int minimumFinishTime(int[][] tires, int changeTime, int numLaps) {
    final int inf = 1 << 30;
    int[] cost = new int[18];
    Arrays.fill(cost, inf);
    for (int[] e : tires) {
      int f = e[0], r = e[1];
      int s = 0, t = f;
      for (int i = 1; t <= changeTime + f; ++i) {
        s += t;
        cost[i] = Math.min(cost[i], s);
        t *= r;
      }
    }
    int[] f = new int[numLaps + 1];
    Arrays.fill(f, inf);
    f[0] = -changeTime;
    for (int i = 1; i <= numLaps; ++i) {
      for (int j = 1; j < Math.min(18, i + 1); ++j) {
        f[i] = Math.min(f[i], f[i - j] + cost[j]);
      }
      f[i] += changeTime;
    }
    return f[numLaps];
  }
}
class Solution {
public:
  int minimumFinishTime(vector<vector<int>>& tires, int changeTime, int numLaps) {
    int cost[18];
    memset(cost, 0x3f, sizeof(cost));
    for (auto& e : tires) {
      int f = e[0], r = e[1];
      int s = 0;
      long long t = f;
      for (int i = 1; t <= changeTime + f; ++i) {
        s += t;
        cost[i] = min(cost[i], s);
        t *= r;
      }
    }
    int f[numLaps + 1];
    memset(f, 0x3f, sizeof(f));
    f[0] = -changeTime;
    for (int i = 1; i <= numLaps; ++i) {
      for (int j = 1; j < min(18, i + 1); ++j) {
        f[i] = min(f[i], f[i - j] + cost[j]);
      }
      f[i] += changeTime;
    }
    return f[numLaps];
  }
};
func minimumFinishTime(tires [][]int, changeTime int, numLaps int) int {
  const inf = 1 << 30
  cost := [18]int{}
  for i := range cost {
    cost[i] = inf
  }
  for _, e := range tires {
    f, r := e[0], e[1]
    s, t := 0, f
    for i := 1; t <= changeTime+f; i++ {
      s += t
      cost[i] = min(cost[i], s)
      t *= r
    }
  }
  f := make([]int, numLaps+1)
  for i := range f {
    f[i] = inf
  }
  f[0] = -changeTime
  for i := 1; i <= numLaps; i++ {
    for j := 1; j < min(18, i+1); j++ {
      f[i] = min(f[i], f[i-j]+cost[j])
    }
    f[i] += changeTime
  }
  return f[numLaps]
}
function minimumFinishTime(tires: number[][], changeTime: number, numLaps: number): number {
  const cost: number[] = Array(18).fill(Infinity);
  for (const [f, r] of tires) {
    let s = 0;
    let t = f;
    for (let i = 1; t <= changeTime + f; ++i) {
      s += t;
      cost[i] = Math.min(cost[i], s);
      t *= r;
    }
  }
  const f: number[] = Array(numLaps + 1).fill(Infinity);
  f[0] = -changeTime;
  for (let i = 1; i <= numLaps; ++i) {
    for (let j = 1; j < Math.min(18, i + 1); ++j) {
      f[i] = Math.min(f[i], f[i - j] + cost[j]);
    }
    f[i] += changeTime;
  }
  return f[numLaps];
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文