- 教程
- 介绍
- 环境
- Ndarray 对象(Ndarray Object)
- 数据类型
- 数组属性(Array Attributes)
- 阵列创建例程(Array Creation Routines)
- 来自现有数据的数组(Array from Existing Data)
- 数值范围中的数组(Array From Numerical Ranges)
- 数值范围中的数组(Array From Numerical Ranges)
- 数值范围中的数组(Array From Numerical Ranges)
- 广播(Broadcasting)
- 迭代数组(Iterating Over Array)
- 数组操作(Array Manipulation)
- Binary 运算符
- 字符串函数(String Functions)
- 数学函数(Mathematical Functions)
- 算术运算(Arithmetic Operations)
- 统计函数(Statistical Functions)
- 统计函数(Statistical Functions)
- 字节交换(Byte Swapping)
- 副本和视图(Copies & Views)
- 矩阵库(Matrix Library)
- 线性代数(Linear Algebra)
- Matplotlib(Matplotlib)
- 使用Matplotlib的直方图(Histogram Using Matplotlib)
- I/O with NumPy
- 有用的资源
- reshape
- flat
- flatten
- ravel
- transpose
- ndarray.T
- rollaxis
- swapaxes
- broadcast
- broadcast_to
- expand_dims
- squeeze
- concatenate
- stack
- hstack
- vstack
- split
- hsplit
- vsplit
- resize
- append
- insert
- delete
- unique
- bitwise_and
- bitwise_or
- invert
- left_shift
- right_shift
- add()
- multiply()
- center()
- capitalize()
- title()
- lower()
- upper()
- split()
- splitlines()
- strip()
- join()
- replace()
- decode()
- encode()
- dot
- vdot
- inner
- matmul
- determinant
- solve
- inv
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
reshape
此函数为数组提供了新形状而不更改数据。 它接受以下参数 -
numpy.reshape(arr, newshape, order')
Where,
Sr.No. | 参数和描述 |
---|---|
1 | arr 要重新整形的数组 |
2 | newshape int或int的元组。 新形状应与原始形状兼容 |
3 | order 对于C风格为'C',对于Fortran风格为'F','A'表示如果数组存储在类似Fortran的连续内存中则为Fortran,否则为C风格 |
例子 (Example)
import numpy as np
a = np.arange(8)
print 'The original array:'
print a
print '\n'
b = a.reshape(4,2)
print 'The modified array:'
print b
其产出如下 -
The original array:
[0 1 2 3 4 5 6 7]
The modified array:
[[0 1]
[2 3]
[4 5]
[6 7]]
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论