返回介绍

开始入门

操作指引

SDK

数据文档

常见问题

量化工具

其他

其他

算法交易

发布于 2024-06-22 12:53:28 字数 9176 浏览 0 评论 0 收藏 0

算法交易介绍

掘金算法交易采用云服务算法模式,相比策略级算法交易或者本地算法交易有以下特点:

  • 行情/交易延迟小,委托任务的拆单算法在券商专有机房执行,专线行情+内网极速柜台接入
  • 算法可靠,服务级经典算法模型,tick 级盘口分析,并提供多项控制参数
  • 运行稳定,执行过程的母单(原始委托任务)、子单(算法根据原始委托任务自动拆解的可执行委托)、回报实时推送到本地

基本规则

  • 算法交易工具仅支持股票交易
  • 部分终端版本无算法交易,以实际有算法交易的实盘为准
  • 算法交易自动拆解的子单等同于普通委托
  • 算法交易自动拆解的子单全部为限价单,且会在终端委托列表内同步显示
  • 算法交易仅管理维护本次任务算法拆解的子单,而不会参考其他等同条件下的其他单

算法适用

  • 适用于母单订单量较大的各类程序化、手工交易场景及其他频繁换仓的用户;母单执行时间大于半小时以上的交易执行,效果更加显著

算法限制

  • 如股票出现临时停牌或涨跌停时,有不能完整完成客户委托数量的可能
  • 用户当日委托的交易金额过大时,可能受到市场流动性不足的影响从而降低算法运行的效果,建议母单量不超过指定交易时段内预期成交量的 15%

下单面板

算法交易下单版

点击算法交易(如果版本支持算法交易),则弹出算法交易面板,如图

算法名称:下拉选择可供使用的算法名称,不同的算法应用于不同的交易需求,后续会不断增加算法模型

  • ATS-SMART 算法:根据用户委托交易特征,通过对市场高频数据的实时分析和处理,利用程序化分析动态选择最优算法执行用户委托。具有高完成度,高稳定性,高隐蔽性,低敞口等特点,在不同持仓风格场景下,中长期均体现出稳定超越 TWAP/VWAP 基准的效果
  • ZC-POV 算法:比例成交算法(Percentage of volume),通过追踪目标股票流动性,按照市场参与度完成用户委托交易。算法针对性解决股票交易中大金额委托造成的交易冲击、目的暴露、完成率低等问题,更加贴近客户的真实委托意愿

ATS-SMART 算法参数

开始时间(P1):策略开始执行的时间(剔除非交易时间段)。如果开始时间早于策略下达时间点时,则使用下达时间作为开始时间 结束参考时间(P2): 结束参考时间,和结束时间一致 结束时间(P3):策略停止执行的时间(剔除非交易时间段)。过了结束时间还未完成的数量,将会自动释放到指令。算法执行的区间段,时间越短,任务执行强度(委托频率和单笔委托量)越高 结束时间是否有效:算法在结束时间是否有效,如设为无效,则以收盘时间为结束时间 涨停时是否停止卖出:标的在涨停时是否需要停止卖出 跌停时是否撤单:标的在跌停时是否需要撤单 最小交易金额:控制子单单笔委托的最小金额 该参数只适用于股票。A 股单位为元 **基准价格:**此算法不生效

注意:p3 必须晚于 p2,p2 必须晚于 p1,交易时长必须大于 3 分钟,不得晚于 14:55,交易数据不应该早于当前时间

ZC-POV 算法参数

参与率:市场参与率,即每日委托总量占市场真实交易额的比例(上交易日参考标准),默认 30%,最高委托量比例限制为 45%。 基准价格:算法模型的参考基准价格,这里指限价。卖出时,当市场价格低于此价格就停止交易,再次高于此价格就恢复交易,并且补回前面应停止交易而少交易的量;买入时,当市场价格高于此价格就停止交易,再次低于此价格就恢复交易,并且补回前面应停止交易而少交易的量。当填入价格为 0 时,则不设置基准价。

任务列表

算法交易任务列表记录了母单任务列表及子单列表

算法交易任务列表

撤销母单:算法服务会进行撤销操作,撤销当前任务并取消所有未结子单 暂停母单:算法服务处于暂停状态,不再进行子单拆解(ATS-SMART 算法不生效) 撤销子单:子单的独立撤销并不属于算法交易范畴,需要在普通委托的未结委托处进行撤销

交易接口

algo_order 算法单委托

get_algo_orders 查询算法母单

algo_order_cancel 撤销算法母单

algo_order_pause 暂停或启动算法母单(ATS-SMART 算法不支持)

get_algo_child_orders 查询算法母单的所有子单

on_algo_order_status 算法单状态事件

注意:仅实盘支持算法单, 点击蓝色字体可获取接口具体用法 接口适用于:python、C++、C#

示例

ATS-SMART 算法示例

# coding=utf-8
from gm.api import *
from gm.model import DictLikeAlgoOrder
from gm.pb.account_pb2 import AlgoOrder
from datetime import timedelta


"""
算法单新增api在 sdk 的 gm.api.trade.py 文件里, 有如下函数, 具体函数签名可点进去看api文档

algo_order
algo_order_cancel
algo_order_pause
get_algo_child_orders
get_algo_orders

start_time	str	开始时间
end_time_referred	str	结束参考时间(不能超过14:55:00)
end_time	str	结束时间(不能超过14:55:00)
end_time_valid	int	结束时间是否有效,如设为无效,则以收盘时间为结束时间, 1为有效, 0为无效
stop_sell_when_dl	int	涨停时是否停止卖出, 1为是,0为否
cancel_when_pl	int	跌停时是否撤单, 1为是, 0为否
min_trade_amount	int	最小交易金额
"""

# ATS-SMART算法示例, 仅接口使用示例


def init(context):

    time = (context.now + timedelta(seconds=3)).strftime('%H:%M:%S')
    schedule(schedule_func=algo, date_rule='1d', time_rule=time)


def algo(context):
    # 算法名
    algo_name = 'ATS-SMART'
    # 算法参数格式如下
    algo_param = {'start_time': '13:00:00', 'end_time_referred': '14:55:00', 'end_time': '14:00:00', 'end_time_valid': 1, 'stop_sell_when_dl': 1,
                  'cancel_when_pl': 0, 'min_trade_amount': 100000}
    symbol = 'SHSE.600008'
    # 基准价, 算法母单需要是限价单
    price = current(symbol)[0]['price']
    aorder = algo_order(symbol=symbol, volume=2000, side=OrderSide_Buy, order_type=OrderType_Limit,
               position_effect=PositionEffect_Open, price=price, algo_name=algo_name, algo_param=algo_param)

    # 提取算法单的 cl_ord_id 委托客户端ID, 用于其它api的查询, 或者撤单时用
    context.algo_order_id = aorder[0]['cl_ord_id']

    #  撤销指定cl_ord_id的算法母单
    # aorders = get_algo_orders(account='')
    # wait_cancel_orders = [{'cl_ord_id': aorders[0]['cl_ord_id'], 'account_id': aorders[0]['account_id']}]
    # algo_order_cancel(wait_cancel_orders)



def on_order_status(context, order):
    # 算法子单已成
    if order['status'] == 3:
        # 查询指定cl_ord_id算法母单的所有子单
        child_order = get_algo_child_orders(context.algo_order_id, account='')
        print('算法子单: child_order ={}'.format(child_order))



def on_algo_order_status(context, algo_order):
    # type: (Context, DictLikeAlgoOrder) -> NoReturn
    """
    算法单状态事件. 参数algo_order为算法单的信息
    响应算法单状态更新事情,下算法单后状态更新时被触发
    3.0.125 后增加.
    """
    print('算法单状态变化: algo_order={}'.format(algo_order))

    # 算法母单已报
    if algo_order['status'] == 1:
        # 查询算法母单, 默认账户account填空
        aorders = get_algo_orders(account='')
        print('算法母单: aorders ={}'.format(aorders))


if __name__ == '__main__':
    '''
    strategy_id策略ID,由系统生成
    filename文件名,请与本文件名保持一致
    mode实时模式:MODE_LIVE回测模式:MODE_BACKTEST
    token绑定计算机的ID,可在系统设置-密钥管理中生成
    backtest_start_time回测开始时间
    backtest_end_time回测结束时间
    backtest_adjust股票复权方式不复权:ADJUST_NONE前复权:ADJUST_PREV后复权:ADJUST_POST
    backtest_initial_cash回测初始资金
    backtest_commission_ratio回测佣金比例
    backtest_slippage_ratio回测滑点比例
    '''
    run(strategy_id='3acc8b6e-af54-11e9-b2de-00163e0a4100',
        filename='main.py',
        mode=MODE_LIVE,
        token='2c4e3c59cde776ebc268bf6d7b4c457f204482b3',
        backtest_start_time='2020-11-02 08:00:00',
        backtest_end_time='2020-11-02 16:00:00',
        backtest_adjust=ADJUST_PREV,
        backtest_initial_cash=10000000,
        backtest_commission_ratio=0.0001,
        backtest_slippage_ratio=0.0001)

ZC-POV 算法示例

# coding=utf-8
from gm.api import *
from gm.model import DictLikeAlgoOrder
from gm.pb.account_pb2 import AlgoOrder
from datetime import timedelta


"""
participation_rate 市场参与率,单位%(5.0 表示5%),默认30,即30%,最大值为45

"""


# ZC-POV算法示例, 仅接口使用示例
def init(context):
    time = (context.now + timedelta(seconds=3)).strftime('%H:%M:%S')
    schedule(schedule_func=algo, date_rule='1d', time_rule=time)


def algo(context):
    # 算法名
    algo_name = 'ZC-POV'
    symbol = 'SHSE.600007'
    # 基准价, 算法母单需要是限价单
    price = current(symbol)[0]['price']
	# 算法参数格式如下
    algo_param = {"participation_rate" : 15, "price": price}

    aorder = algo_order(symbol=symbol, volume=1000, side=OrderSide_Buy, order_type=OrderType_Limit,
               position_effect=PositionEffect_Open, price=price, algo_name=algo_name, algo_param=algo_param)
    print(aorder)
    # 提取算法单的 cl_ord_id 委托客户端ID, 用于其它api的查询, 或者撤单时用
    context.algo_order_id = aorder[0]['cl_ord_id']
    #  撤销指定cl_ord_id的算法母单
    # aorders = get_algo_orders(account='')
    # wait_cancel_orders = [{'cl_ord_id': aorders[0]['cl_ord_id'], 'account_id': aorders[0]['account_id']}]
    # algo_order_cancel(wait_cancel_orders)


def on_order_status(context, order):
    # 算法子单已成
    if order['status'] == 3:
        # 查询指定cl_ord_id算法母单的所有子单
        child_order = get_algo_child_orders(context.algo_order_id, account='')
        print('算法子单: child_order ={}'.format(child_order))


def on_algo_order_status(context, algo_order):
    # type: (Context, DictLikeAlgoOrder) -> NoReturn
    """
    算法单状态事件. 参数algo_order为算法单的信息
    响应算法单状态更新事情,下算法单后状态更新时被触发
    3.0.125 后增加.
    """
    print('算法单状态变化: algo_order={}'.format(algo_order))
    # 算法母单已报
    if algo_order['status'] == 1:
        # 查询算法母单, 默认账户account填空
        aorders = get_algo_orders(account='')
        print('算法母单: aorders ={}'.format(aorders))


if __name__ == '__main__':
    '''
    strategy_id策略ID,由系统生成
    filename文件名,请与本文件名保持一致
    mode实时模式:MODE_LIVE回测模式:MODE_BACKTEST
    token绑定计算机的ID,可在系统设置-密钥管理中生成
    backtest_start_time回测开始时间
    backtest_end_time回测结束时间
    backtest_adjust股票复权方式不复权:ADJUST_NONE前复权:ADJUST_PREV后复权:ADJUST_POST
    backtest_initial_cash回测初始资金
    backtest_commission_ratio回测佣金比例
    backtest_slippage_ratio回测滑点比例
    '''
    run(strategy_id='strategy_id',
        filename='main.py',
        mode=MODE_LIVE,
        token='token',
        backtest_start_time='2020-11-02 08:00:00',
        backtest_end_time='2020-11-02 16:00:00',
        backtest_adjust=ADJUST_PREV,
        backtest_initial_cash=10000000,
        backtest_commission_ratio=0.0001,
        backtest_slippage_ratio=0.0001)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文