返回介绍

solution / 0000-0099 / 0022.Generate Parentheses / README

发布于 2024-06-17 01:04:40 字数 5953 浏览 0 评论 0 收藏 0

22. 括号生成

English Version

题目描述

数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。

 

示例 1:

输入:n = 3
输出:["((()))","(()())","(())()","()(())","()()()"]

示例 2:

输入:n = 1
输出:["()"]

 

提示:

  • 1 <= n <= 8

解法

方法一:DFS + 剪枝

题目中 $n$ 的范围为 $[1, 8]$,因此我们直接通过“暴力搜索 + 剪枝”的方式通过本题。

我们设计一个函数 $dfs(l, r, t)$,其中 $l$ 和 $r$ 分别表示左括号和右括号的数量,而 $t$ 表示当前的括号序列。那么我们可以得到如下的递归结构:

  • 如果 $l \gt n$ 或者 $r \gt n$ 或者 $l \lt r$,那么当前括号组合 $t$ 不合法,直接返回;
  • 如果 $l = n$ 且 $r = n$,那么当前括号组合 $t$ 合法,将其加入答案数组 ans 中,直接返回;
  • 我们可以选择添加一个左括号,递归执行 dfs(l + 1, r, t + "(")
  • 我们也可以选择添加一个右括号,递归执行 dfs(l, r + 1, t + ")")

时间复杂度 $O(2^{n\times 2} \times n)$,空间复杂度 $O(n)$。

class Solution:
  def generateParenthesis(self, n: int) -> List[str]:
    def dfs(l, r, t):
      if l > n or r > n or l < r:
        return
      if l == n and r == n:
        ans.append(t)
        return
      dfs(l + 1, r, t + '(')
      dfs(l, r + 1, t + ')')

    ans = []
    dfs(0, 0, '')
    return ans
class Solution {
  private List<String> ans = new ArrayList<>();
  private int n;

  public List<String> generateParenthesis(int n) {
    this.n = n;
    dfs(0, 0, "");
    return ans;
  }

  private void dfs(int l, int r, String t) {
    if (l > n || r > n || l < r) {
      return;
    }
    if (l == n && r == n) {
      ans.add(t);
      return;
    }
    dfs(l + 1, r, t + "(");
    dfs(l, r + 1, t + ")");
  }
}
class Solution {
public:
  vector<string> generateParenthesis(int n) {
    vector<string> ans;
    function<void(int, int, string)> dfs = [&](int l, int r, string t) {
      if (l > n || r > n || l < r) return;
      if (l == n && r == n) {
        ans.push_back(t);
        return;
      }
      dfs(l + 1, r, t + "(");
      dfs(l, r + 1, t + ")");
    };
    dfs(0, 0, "");
    return ans;
  }
};
func generateParenthesis(n int) (ans []string) {
  var dfs func(int, int, string)
  dfs = func(l, r int, t string) {
    if l > n || r > n || l < r {
      return
    }
    if l == n && r == n {
      ans = append(ans, t)
      return
    }
    dfs(l+1, r, t+"(")
    dfs(l, r+1, t+")")
  }
  dfs(0, 0, "")
  return ans
}
function generateParenthesis(n: number): string[] {
  function dfs(l, r, t) {
    if (l > n || r > n || l < r) {
      return;
    }
    if (l == n && r == n) {
      ans.push(t);
      return;
    }
    dfs(l + 1, r, t + '(');
    dfs(l, r + 1, t + ')');
  }
  let ans = [];
  dfs(0, 0, '');
  return ans;
}
impl Solution {
  fn dfs(left: i32, right: i32, s: &mut String, res: &mut Vec<String>) {
    if left == 0 && right == 0 {
      res.push(s.clone());
      return;
    }
    if left > 0 {
      s.push('(');
      Self::dfs(left - 1, right, s, res);
      s.pop();
    }
    if right > left {
      s.push(')');
      Self::dfs(left, right - 1, s, res);
      s.pop();
    }
  }

  pub fn generate_parenthesis(n: i32) -> Vec<String> {
    let mut res = Vec::new();
    Self::dfs(n, n, &mut String::new(), &mut res);
    res
  }
}
/**
 * @param {number} n
 * @return {string[]}
 */
var generateParenthesis = function (n) {
  function dfs(l, r, t) {
    if (l > n || r > n || l < r) {
      return;
    }
    if (l == n && r == n) {
      ans.push(t);
      return;
    }
    dfs(l + 1, r, t + '(');
    dfs(l, r + 1, t + ')');
  }
  let ans = [];
  dfs(0, 0, '');
  return ans;
};

方法二

impl Solution {
  pub fn generate_parenthesis(n: i32) -> Vec<String> {
    let mut dp: Vec<Vec<String>> = vec![vec![]; n as usize + 1];

    // Initialize the dp vector
    dp[0].push(String::from(""));
    dp[1].push(String::from("()"));

    // Begin the actual dp process
    for i in 2..=n as usize {
      for j in 0..i as usize {
        let dp_c = dp.clone();
        let first_half = &dp_c[j];
        let second_half = &dp_c[i - j - 1];

        for f in first_half {
          for s in second_half {
            let f_c = f.clone();
            let cur_str = f_c + "(" + &*s + ")";
            dp[i].push(cur_str);
          }
        }
      }
    }

    dp[n as usize].clone()
  }
}
class Solution {
  /**
   * @param int $n
   * @return string[]
   */

  function generateParenthesis($n) {
    $result = [];
    $this->backtrack($result, '', 0, 0, $n);
    return $result;
  }

  function backtrack(&$result, $current, $open, $close, $max) {
    if (strlen($current) === $max * 2) {
      $result[] = $current;
      return;
    }
    if ($open < $max) {
      $this->backtrack($result, $current . '(', $open + 1, $close, $max);
    }
    if ($close < $open) {
      $this->backtrack($result, $current . ')', $open, $close + 1, $max);
    }
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文