返回介绍

solution / 0000-0099 / 0096.Unique Binary Search Trees / README

发布于 2024-06-17 01:04:05 字数 3206 浏览 0 评论 0 收藏 0

96. 不同的二叉搜索树

English Version

题目描述

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

 

示例 1:

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

 

提示:

  • 1 <= n <= 19

解法

方法一:动态规划

我们定义 $f[i]$ 表示 $[1, i]$ 能产生的二叉搜索树的个数,初始时 $f[0] = 1$,答案为 $f[n]$。

我们可以枚举节点数 $i$,那么左子树节点数 $j \in [0, i - 1]$,右子树节点数 $k = i - j - 1$,左子树节点数和右子树节点数的组合数为 $f[j] \times f[k]$,因此 $f[i] = \sum_{j = 0}^{i - 1} f[j] \times f[i - j - 1]$。

最后返回 $f[n]$ 即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为节点数。

class Solution:
  def numTrees(self, n: int) -> int:
    f = [1] + [0] * n
    for i in range(n + 1):
      for j in range(i):
        f[i] += f[j] * f[i - j - 1]
    return f[n]
class Solution {
  public int numTrees(int n) {
    int[] f = new int[n + 1];
    f[0] = 1;
    for (int i = 1; i <= n; ++i) {
      for (int j = 0; j < i; ++j) {
        f[i] += f[j] * f[i - j - 1];
      }
    }
    return f[n];
  }
}
class Solution {
public:
  int numTrees(int n) {
    vector<int> f(n + 1);
    f[0] = 1;
    for (int i = 1; i <= n; ++i) {
      for (int j = 0; j < i; ++j) {
        f[i] += f[j] * f[i - j - 1];
      }
    }
    return f[n];
  }
};
func numTrees(n int) int {
  f := make([]int, n+1)
  f[0] = 1
  for i := 1; i <= n; i++ {
    for j := 0; j < i; j++ {
      f[i] += f[j] * f[i-j-1]
    }
  }
  return f[n]
}
function numTrees(n: number): number {
  const f: number[] = Array(n + 1).fill(0);
  f[0] = 1;
  for (let i = 1; i <= n; ++i) {
    for (let j = 0; j < i; ++j) {
      f[i] += f[j] * f[i - j - 1];
    }
  }
  return f[n];
}
impl Solution {
  pub fn num_trees(n: i32) -> i32 {
    let n = n as usize;
    let mut f = vec![0; n + 1];
    f[0] = 1;
    for i in 1..=n {
      for j in 0..i {
        f[i] += f[j] * f[i - j - 1];
      }
    }
    f[n] as i32
  }
}
public class Solution {
  public int NumTrees(int n) {
    int[] f = new int[n + 1];
    f[0] = 1;
    for (int i = 1; i <= n; ++i) {
      for (int j = 0; j < i; ++j) {
        f[i] += f[j] * f[i - j - 1];
      }
    }
    return f[n];
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文