文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
12.2 分治搜索策略
我们已经学过,搜索算法分为两大类。
- 暴力搜索:它通过遍历数据结构实现,时间复杂度为 \(O(n)\) 。
- 自适应搜索:它利用特有的数据组织形式或先验信息,时间复杂度可达到 \(O(\log n)\) 甚至 \(O(1)\) 。
实际上,时间复杂度为 \(O(\log n)\) 的搜索算法通常是基于分治策略实现的,例如二分查找和树。
- 二分查找的每一步都将问题(在数组中搜索目标元素)分解为一个小问题(在数组的一半中搜索目标元素),这个过程一直持续到数组为空或找到目标元素为止。
- 树是分治思想的代表,在二叉搜索树、AVL 树、堆等数据结构中,各种操作的时间复杂度皆为 \(O(\log n)\) 。
二分查找的分治策略如下所示。
- 问题可以分解:二分查找递归地将原问题(在数组中进行查找)分解为子问题(在数组的一半中进行查找),这是通过比较中间元素和目标元素来实现的。
- 子问题是独立的:在二分查找中,每轮只处理一个子问题,它不受其他子问题的影响。
- 子问题的解无须合并:二分查找旨在查找一个特定元素,因此不需要将子问题的解进行合并。当子问题得到解决时,原问题也会同时得到解决。
分治能够提升搜索效率,本质上是因为暴力搜索每轮只能排除一个选项,而分治搜索每轮可以排除一半选项。
1. 基于分治实现二分查找
在之前的章节中,二分查找是基于递推(迭代)实现的。现在我们基于分治(递归)来实现它。
Question
给定一个长度为 \(n\) 的有序数组 nums
,其中所有元素都是唯一的,请查找元素 target
。
从分治角度,我们将搜索区间 \([i, j]\) 对应的子问题记为 \(f(i, j)\) 。
以原问题 \(f(0, n-1)\) 为起始点,通过以下步骤进行二分查找。
- 计算搜索区间 \([i, j]\) 的中点 \(m\) ,根据它排除一半搜索区间。
- 递归求解规模减小一半的子问题,可能为 \(f(i, m-1)\) 或 \(f(m+1, j)\) 。
- 循环第
1.
步和第2.
步,直至找到target
或区间为空时返回。
图 12-4 展示了在数组中二分查找元素 \(6\) 的分治过程。
图 12-4 二分查找的分治过程
在实现代码中,我们声明一个递归函数 dfs()
来求解问题 \(f(i, j)\) :
def dfs(nums: list[int], target: int, i: int, j: int) -> int:
"""二分查找:问题 f(i, j)"""
# 若区间为空,代表无目标元素,则返回 -1
if i > j:
return -1
# 计算中点索引 m
m = (i + j) // 2
if nums[m] < target:
# 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j)
elif nums[m] > target:
# 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1)
else:
# 找到目标元素,返回其索引
return m
def binary_search(nums: list[int], target: int) -> int:
"""二分查找"""
n = len(nums)
# 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1)
binary_search_recur.cpp/* 二分查找:问题 f(i, j) */
int dfs(vector<int> &nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(vector<int> &nums, int target) {
int n = nums.size();
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
binary_search_recur.java/* 二分查找:问题 f(i, j) */
int dfs(int[] nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(int[] nums, int target) {
int n = nums.length;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
binary_search_recur.cs/* 二分查找:问题 f(i, j) */
int DFS(int[] nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return DFS(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return DFS(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int BinarySearch(int[] nums, int target) {
int n = nums.Length;
// 求解问题 f(0, n-1)
return DFS(nums, target, 0, n - 1);
}
binary_search_recur.go/* 二分查找:问题 f(i, j) */
func dfs(nums []int, target, i, j int) int {
// 如果区间为空,代表没有目标元素,则返回 -1
if i > j {
return -1
}
// 计算索引中点
m := i + ((j - i) >> 1)
//判断中点与目标元素大小
if nums[m] < target {
// 小于则递归右半数组
// 递归子问题 f(m+1, j)
return dfs(nums, target, m+1, j)
} else if nums[m] > target {
// 小于则递归左半数组
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m-1)
} else {
// 找到目标元素,返回其索引
return m
}
}
/* 二分查找 */
func binarySearch(nums []int, target int) int {
n := len(nums)
return dfs(nums, target, 0, n-1)
}
binary_search_recur.swift/* 二分查找:问题 f(i, j) */
func dfs(nums: [Int], target: Int, i: Int, j: Int) -> Int {
// 若区间为空,代表无目标元素,则返回 -1
if i > j {
return -1
}
// 计算中点索引 m
let m = (i + j) / 2
if nums[m] < target {
// 递归子问题 f(m+1, j)
return dfs(nums: nums, target: target, i: m + 1, j: j)
} else if nums[m] > target {
// 递归子问题 f(i, m-1)
return dfs(nums: nums, target: target, i: i, j: m - 1)
} else {
// 找到目标元素,返回其索引
return m
}
}
/* 二分查找 */
func binarySearch(nums: [Int], target: Int) -> Int {
// 求解问题 f(0, n-1)
dfs(nums: nums, target: target, i: nums.startIndex, j: nums.endIndex - 1)
}
binary_search_recur.js/* 二分查找:问题 f(i, j) */
function dfs(nums, target, i, j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
const m = i + ((j - i) >> 1);
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
function binarySearch(nums, target) {
const n = nums.length;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
binary_search_recur.ts/* 二分查找:问题 f(i, j) */
function dfs(nums: number[], target: number, i: number, j: number): number {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
const m = i + ((j - i) >> 1);
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
function binarySearch(nums: number[], target: number): number {
const n = nums.length;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
binary_search_recur.dart/* 二分查找:问题 f(i, j) */
int dfs(List<int> nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) ~/ 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(List<int> nums, int target) {
int n = nums.length;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
binary_search_recur.rs/* 二分查找:问题 f(i, j) */
fn dfs(nums: &[i32], target: i32, i: i32, j: i32) -> i32 {
// 若区间为空,代表无目标元素,则返回 -1
if i > j {
return -1;
}
let m: i32 = i + (j - i) / 2;
if nums[m as usize] < target {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if nums[m as usize] > target {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
fn binary_search(nums: &[i32], target: i32) -> i32 {
let n = nums.len() as i32;
// 求解问题 f(0, n-1)
dfs(nums, target, 0, n - 1)
}
binary_search_recur.c/* 二分查找:问题 f(i, j) */
int dfs(int nums[], int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(int nums[], int target, int numsSize) {
int n = numsSize;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
binary_search_recur.kt/* 二分查找:问题 f(i, j) */
fun dfs(
nums: IntArray,
target: Int,
i: Int,
j: Int
): Int {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1
}
// 计算中点索引 m
val m = (i + j) / 2
return if (nums[m] < target) {
// 递归子问题 f(m+1, j)
dfs(nums, target, m + 1, j)
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
dfs(nums, target, i, m - 1)
} else {
// 找到目标元素,返回其索引
m
}
}
/* 二分查找 */
fun binarySearch(nums: IntArray, target: Int): Int {
val n = nums.size
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1)
}
binary_search_recur.rb### 二分查找:问题 f(i, j) ###
def dfs(nums, target, i, j)
# 若区间为空,代表无目标元素,则返回 -1
return -1 if i > j
# 计算中点索引 m
m = (i + j) / 2
if nums[m] < target
# 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j)
elsif nums[m] > target
# 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1)
else
# 找到目标元素,返回其索引
return m
end
end
### 二分查找 ###
def binary_search(nums, target)
n = nums.length
# 求解问题 f(0, n-1)
dfs(nums, target, 0, n - 1)
end
binary_search_recur.zig[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论