返回介绍

lcof2 / 剑指 Offer II 003. 前 n 个数字二进制中 1 的个数 / README

发布于 2024-06-17 01:04:42 字数 2954 浏览 0 评论 0 收藏 0

剑指 Offer II 003. 前 n 个数字二进制中 1 的个数

题目描述

给定一个非负整数 n ,请计算 0n 之间的每个数字的二进制表示中 1 的个数,并输出一个数组。

 

示例 1:

输入: n = 2
输出: [0,1,1]
解释: 
0 --> 0
1 --> 1
2 --> 10

示例 2:

输入: n = 5
输出: [0,1,1,2,1,2]
解释:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101

 

说明 :

  • 0 <= n <= 105

 

进阶:

  • 给出时间复杂度为 O(n*sizeof(integer)) 的解答非常容易。但你可以在线性时间 O(n) 内用一趟扫描做到吗?
  • 要求算法的空间复杂度为 O(n) 。
  • 你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中的 __builtin_popcount )来执行此操作。

 

注意:本题与主站 338 题相同:https://leetcode.cn/problems/counting-bits/

解法

方法一:动态规划

我们定义 $f[i]$ 表示整数 $i$ 的二进制表示中 $1$ 的个数。那么对于一个整数 $i$,它的二进制表示中 $1$ 的个数为 $f[i \wedge (i - 1)] + 1$,其中 $i \wedge (i - 1)$ 是将 $i$ 的二进制表示中的最低位的 $1$ 变成 $0$ 之后的数,显然 $i \wedge (i - 1) \lt i$,且 $f[i \wedge (i - 1)]$ 已经被计算出来了,因此我们可以得到状态转移方程:

$$ f[i] = f[i \wedge (i - 1)] + 1 $$

时间复杂度 $O(n)$,其中 $n$ 是题目给定的整数。忽略答案数组的空间消耗,空间复杂度 $O(1)$。

class Solution:
  def countBits(self, n: int) -> List[int]:
    f = [0] * (n + 1)
    for i in range(1, n + 1):
      f[i] = f[i & (i - 1)] + 1
    return f
class Solution {
  public int[] countBits(int n) {
    int[] f = new int[n + 1];
    for (int i = 1; i <= n; ++i) {
      f[i] = f[i & (i - 1)] + 1;
    }
    return f;
  }
}
class Solution {
public:
  vector<int> countBits(int n) {
    vector<int> f(n + 1);
    for (int i = 1; i <= n; ++i) {
      f[i] = f[i & (i - 1)] + 1;
    }
    return f;
  }
};
func countBits(n int) []int {
  f := make([]int, n+1)
  for i := 1; i <= n; i++ {
    f[i] = f[i&(i-1)] + 1
  }
  return f
}
function countBits(n: number): number[] {
  const f: number[] = Array(n + 1).fill(0);
  for (let i = 1; i <= n; ++i) {
    f[i] = f[i & (i - 1)] + 1;
  }
  return f;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文