返回介绍

solution / 2700-2799 / 2737.Find the Closest Marked Node / README

发布于 2024-06-17 01:03:00 字数 7373 浏览 0 评论 0 收藏 0

2737. 找到最近的标记节点

English Version

题目描述

给定一个正整数 n ,表示一个 索引从 0 开始的有向加权 图的节点数量,以及一个 索引从 0 开始的二维数组 edges ,其中 edges[i] = [ui, vi, wi] 表示从节点 ui 到节点 vi 的一条权重为 wi 的边。

并给定一个节点 s 和一个节点数组 marked ;你的任务是找到从 smarked任何 节点的 最短 距离。

返回一个整数,表示从 smarked 中任何节点的最短距离,如果从 s 到任何标记节点没有路径,则返回 -1 。

 

示例 1:

输入:n = 4, edges = [[0,1,1],[1,2,3],[2,3,2],[0,3,4]], s = 0, marked = [2,3]
输出:4
解释:从节点 0(绿色节点)到节点 2(红色节点)有一条路径,即 0->1->2,距离为 1 + 3 = 4。 
从节点 0 到节点 3(红色节点)有两条路径,即 0->1->2->3 和 0->3,分别距离为 1 + 3 + 2 = 6 和 4。 
它们中的最小值是 4。

示例 2:

输入:n = 5, edges = [[0,1,2],[0,2,4],[1,3,1],[2,3,3],[3,4,2]], s = 1, marked = [0,4]
输出:3
解释:从节点 1(绿色节点)到节点 0(红色节点)没有路径。 
从节点 1 到节点 4(红色节点)有一条路径,即 1->3->4,距离为 1 + 2 = 3。 
因此答案是 3。

示例 3:

输入:n = 4, edges = [[0,1,1],[1,2,3],[2,3,2]], s = 3, marked = [0,1]
输出:-1
解释:从节点 3(绿色节点)到任何一个标记节点(红色节点)都没有路径,因此答案是 -1。

 

提示:

  • 2 <= n <= 500
  • 1 <= edges.length <= 104
  • edges[i].length = 3
  • 0 <= edges[i][0], edges[i][1] <= n - 1
  • 1 <= edges[i][2] <= 106
  • 1 <= marked.length <= n - 1
  • 0 <= s, marked[i] <= n - 1
  • s != marked[i]
  • 如果 i != j 则 marked[i] != marked[j]
  • 图中可能有 重复的边 。
  • 图的生成不会出现 自环

解法

方法一:Dijkstra 算法

我们先根据题目中提供的边的信息,建立一个邻接矩阵 $g$,其中 $g[i][j]$ 表示节点 $i$ 到节点 $j$ 的距离,如果不存在这样的边,则 $g[i][j]$ 为正无穷。

然后我们就可以使用 Dijkstra 算法求出从起点 $s$ 到所有节点的最短距离,记为 $dist$。

最后我们遍历所有的标记节点,找到距离最小的标记节点,如果距离为正无穷,则返回 $-1$。

时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。其中 $n$ 为节点数。

class Solution:
  def minimumDistance(
    self, n: int, edges: List[List[int]], s: int, marked: List[int]
  ) -> int:
    g = [[inf] * n for _ in range(n)]
    for u, v, w in edges:
      g[u][v] = min(g[u][v], w)
    dist = [inf] * n
    vis = [False] * n
    dist[s] = 0
    for _ in range(n):
      t = -1
      for j in range(n):
        if not vis[j] and (t == -1 or dist[t] > dist[j]):
          t = j
      vis[t] = True
      for j in range(n):
        dist[j] = min(dist[j], dist[t] + g[t][j])
    ans = min(dist[i] for i in marked)
    return -1 if ans >= inf else ans
class Solution {
  public int minimumDistance(int n, List<List<Integer>> edges, int s, int[] marked) {
    final int inf = 1 << 29;
    int[][] g = new int[n][n];
    for (var e : g) {
      Arrays.fill(e, inf);
    }
    for (var e : edges) {
      int u = e.get(0), v = e.get(1), w = e.get(2);
      g[u][v] = Math.min(g[u][v], w);
    }
    int[] dist = new int[n];
    Arrays.fill(dist, inf);
    dist[s] = 0;
    boolean[] vis = new boolean[n];
    for (int i = 0; i < n; ++i) {
      int t = -1;
      for (int j = 0; j < n; ++j) {
        if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
          t = j;
        }
      }
      vis[t] = true;
      for (int j = 0; j < n; ++j) {
        dist[j] = Math.min(dist[j], dist[t] + g[t][j]);
      }
    }
    int ans = inf;
    for (int i : marked) {
      ans = Math.min(ans, dist[i]);
    }
    return ans >= inf ? -1 : ans;
  }
}
class Solution {
public:
  int minimumDistance(int n, vector<vector<int>>& edges, int s, vector<int>& marked) {
    const int inf = 1 << 29;
    vector<vector<int>> g(n, vector<int>(n, inf));
    vector<int> dist(n, inf);
    dist[s] = 0;
    vector<bool> vis(n);
    for (auto& e : edges) {
      int u = e[0], v = e[1], w = e[2];
      g[u][v] = min(g[u][v], w);
    }
    for (int i = 0; i < n; ++i) {
      int t = -1;
      for (int j = 0; j < n; ++j) {
        if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
          t = j;
        }
      }
      vis[t] = true;
      for (int j = 0; j < n; ++j) {
        dist[j] = min(dist[j], dist[t] + g[t][j]);
      }
    }
    int ans = inf;
    for (int i : marked) {
      ans = min(ans, dist[i]);
    }
    return ans >= inf ? -1 : ans;
  }
};
func minimumDistance(n int, edges [][]int, s int, marked []int) int {
  const inf = 1 << 29
  g := make([][]int, n)
  dist := make([]int, n)
  for i := range g {
    g[i] = make([]int, n)
    for j := range g[i] {
      g[i][j] = inf
    }
    dist[i] = inf
  }
  dist[s] = 0
  for _, e := range edges {
    u, v, w := e[0], e[1], e[2]
    g[u][v] = min(g[u][v], w)
  }
  vis := make([]bool, n)
  for _ = range g {
    t := -1
    for j := 0; j < n; j++ {
      if !vis[j] && (t == -1 || dist[j] < dist[t]) {
        t = j
      }
    }
    vis[t] = true
    for j := 0; j < n; j++ {
      dist[j] = min(dist[j], dist[t]+g[t][j])
    }
  }
  ans := inf
  for _, i := range marked {
    ans = min(ans, dist[i])
  }
  if ans >= inf {
    return -1
  }
  return ans
}
function minimumDistance(n: number, edges: number[][], s: number, marked: number[]): number {
  const inf = 1 << 29;
  const g: number[][] = Array(n)
    .fill(0)
    .map(() => Array(n).fill(inf));
  const dist: number[] = Array(n).fill(inf);
  const vis: boolean[] = Array(n).fill(false);
  for (const [u, v, w] of edges) {
    g[u][v] = Math.min(g[u][v], w);
  }
  dist[s] = 0;
  for (let i = 0; i < n; ++i) {
    let t = -1;
    for (let j = 0; j < n; ++j) {
      if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
        t = j;
      }
    }
    vis[t] = true;
    for (let j = 0; j < n; ++j) {
      dist[j] = Math.min(dist[j], dist[t] + g[t][j]);
    }
  }
  let ans = inf;
  for (const i of marked) {
    ans = Math.min(ans, dist[i]);
  }
  return ans >= inf ? -1 : ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文