返回介绍

solution / 2100-2199 / 2123.Minimum Operations to Remove Adjacent Ones in Matrix / README

发布于 2024-06-17 01:03:09 字数 8469 浏览 0 评论 0 收藏 0

2123. 使矩阵中的 1 互不相邻的最小操作数

English Version

题目描述

给你一个 下标从 0 开始 的矩阵 grid。每次操作,你可以把 grid 中的 一个 1 变成 0

如果一个矩阵中,没有 1 与其它的 1 四连通(也就是说所有 1 在上下左右四个方向上不能与其他 1 相邻),那么该矩阵就是 完全独立 的。

请返回让 grid 成为 完全独立 的矩阵的 _最小操作数_。

 

示例 1:

输入: grid = [[1,1,0],[0,1,1],[1,1,1]]
输出: 3
解释: 可以进行三次操作(把 grid[0][1], grid[1][2] 和 grid[2][1] 变成 0)。
操作后的矩阵中的所有的 1 与其它 1 均不相邻,因此矩阵是完全独立的。

示例 2:

输入: grid = [[0,0,0],[0,0,0],[0,0,0]]
输出: 0
解释: 矩阵中没有 1,此时矩阵也是完全独立的,因此无需操作,返回 0。

示例 3:

输入: grid = [[0,1],[1,0]]
输出: 0
解释: 矩阵中的所有的 1 与其它 1 均不相邻,已经是完全独立的,因此无需操作,返回 0。

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 300
  • grid[i][j] 是 0 或者 1.

解法

方法一:匈牙利算法

我们注意到,如果矩阵中的两个 $1$ 相邻,那么它们一定属于不同的组。因此,我们可以把矩阵中所有的 $1$ 视为点,相邻的两个 $1$ 之间连一条边,构建二分图。

那么,问题可以转化为求二分图最小点覆盖,也即选出最少数目的点来覆盖所有的边。由于二分图的最小点覆盖数等于最大匹配数,因此我们可以使用匈牙利算法求出二分图的最大匹配数。

匈牙利算法的核心思想是,不断地从未匹配的点出发,寻找增广路径,直到没有增广路径为止,就得到了最大匹配。

时间复杂度 $O(m \times n)$,其中 $n$ 和 $m$ 分别是矩阵中 $1$ 的数目以及边的数目。

class Solution:
  def minimumOperations(self, grid: List[List[int]]) -> int:
    def find(i: int) -> int:
      for j in g[i]:
        if j not in vis:
          vis.add(j)
          if match[j] == -1 or find(match[j]):
            match[j] = i
            return 1
      return 0

    g = defaultdict(list)
    m, n = len(grid), len(grid[0])
    for i, row in enumerate(grid):
      for j, v in enumerate(row):
        if (i + j) % 2 and v:
          x = i * n + j
          if i < m - 1 and grid[i + 1][j]:
            g[x].append(x + n)
          if i and grid[i - 1][j]:
            g[x].append(x - n)
          if j < n - 1 and grid[i][j + 1]:
            g[x].append(x + 1)
          if j and grid[i][j - 1]:
            g[x].append(x - 1)

    match = [-1] * (m * n)
    ans = 0
    for i in g.keys():
      vis = set()
      ans += find(i)
    return ans
class Solution {
  private Map<Integer, List<Integer>> g = new HashMap<>();
  private Set<Integer> vis = new HashSet<>();
  private int[] match;

  public int minimumOperations(int[][] grid) {
    int m = grid.length, n = grid[0].length;
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        if ((i + j) % 2 == 1 && grid[i][j] == 1) {
          int x = i * n + j;
          if (i < m - 1 && grid[i + 1][j] == 1) {
            g.computeIfAbsent(x, z -> new ArrayList<>()).add(x + n);
          }
          if (i > 0 && grid[i - 1][j] == 1) {
            g.computeIfAbsent(x, z -> new ArrayList<>()).add(x - n);
          }
          if (j < n - 1 && grid[i][j + 1] == 1) {
            g.computeIfAbsent(x, z -> new ArrayList<>()).add(x + 1);
          }
          if (j > 0 && grid[i][j - 1] == 1) {
            g.computeIfAbsent(x, z -> new ArrayList<>()).add(x - 1);
          }
        }
      }
    }
    match = new int[m * n];
    Arrays.fill(match, -1);
    int ans = 0;
    for (int i : g.keySet()) {
      ans += find(i);
      vis.clear();
    }
    return ans;
  }

  private int find(int i) {
    for (int j : g.get(i)) {
      if (vis.add(j)) {
        if (match[j] == -1 || find(match[j]) == 1) {
          match[j] = i;
          return 1;
        }
      }
    }
    return 0;
  }
}
class Solution {
public:
  int minimumOperations(vector<vector<int>>& grid) {
    int m = grid.size(), n = grid[0].size();
    vector<int> match(m * n, -1);
    unordered_set<int> vis;
    unordered_map<int, vector<int>> g;
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        if ((i + j) % 2 && grid[i][j]) {
          int x = i * n + j;
          if (i < m - 1 && grid[i + 1][j]) {
            g[x].push_back(x + n);
          }
          if (i && grid[i - 1][j]) {
            g[x].push_back(x - n);
          }
          if (j < n - 1 && grid[i][j + 1]) {
            g[x].push_back(x + 1);
          }
          if (j && grid[i][j - 1]) {
            g[x].push_back(x - 1);
          }
        }
      }
    }
    int ans = 0;
    function<int(int)> find = [&](int i) -> int {
      for (int& j : g[i]) {
        if (!vis.count(j)) {
          vis.insert(j);
          if (match[j] == -1 || find(match[j])) {
            match[j] = i;
            return 1;
          }
        }
      }
      return 0;
    };
    for (auto& [i, _] : g) {
      ans += find(i);
      vis.clear();
    }
    return ans;
  }
};
func minimumOperations(grid [][]int) (ans int) {
  m, n := len(grid), len(grid[0])
  vis := map[int]bool{}
  match := make([]int, m*n)
  for i := range match {
    match[i] = -1
  }
  g := map[int][]int{}
  for i, row := range grid {
    for j, v := range row {
      if (i+j)&1 == 1 && v == 1 {
        x := i*n + j
        if i < m-1 && grid[i+1][j] == 1 {
          g[x] = append(g[x], x+n)
        }
        if i > 0 && grid[i-1][j] == 1 {
          g[x] = append(g[x], x-n)
        }
        if j < n-1 && grid[i][j+1] == 1 {
          g[x] = append(g[x], x+1)
        }
        if j > 0 && grid[i][j-1] == 1 {
          g[x] = append(g[x], x-1)
        }
      }
    }
  }
  var find func(int) int
  find = func(i int) int {
    for _, j := range g[i] {
      if !vis[j] {
        vis[j] = true
        if match[j] == -1 || find(match[j]) == 1 {
          match[j] = i
          return 1
        }
      }
    }
    return 0
  }
  for i := range g {
    ans += find(i)
    vis = map[int]bool{}
  }
  return
}
function minimumOperations(grid: number[][]): number {
  const m = grid.length;
  const n = grid[0].length;
  const match: number[] = Array(m * n).fill(-1);
  const vis: Set<number> = new Set();
  const g: Map<number, number[]> = new Map();
  for (let i = 0; i < m; ++i) {
    for (let j = 0; j < n; ++j) {
      if ((i + j) % 2 && grid[i][j]) {
        const x = i * n + j;
        g.set(x, []);
        if (i < m - 1 && grid[i + 1][j]) {
          g.get(x)!.push(x + n);
        }
        if (i && grid[i - 1][j]) {
          g.get(x)!.push(x - n);
        }
        if (j < n - 1 && grid[i][j + 1]) {
          g.get(x)!.push(x + 1);
        }
        if (j && grid[i][j - 1]) {
          g.get(x)!.push(x - 1);
        }
      }
    }
  }
  const find = (i: number): number => {
    for (const j of g.get(i)!) {
      if (!vis.has(j)) {
        vis.add(j);
        if (match[j] === -1 || find(match[j])) {
          match[j] = i;
          return 1;
        }
      }
    }
    return 0;
  };
  let ans = 0;
  for (const i of g.keys()) {
    ans += find(i);
    vis.clear();
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文