8.3 Top-k 问题
Question
给定一个长度为 \(n\) 的无序数组 nums
,请返回数组中最大的 \(k\) 个元素。
对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法。
8.3.1 方法一:遍历选择
我们可以进行图 8-6 所示的 \(k\) 轮遍历,分别在每轮中提取第 \(1\)、\(2\)、\(\dots\)、\(k\) 大的元素,时间复杂度为 \(O(nk)\) 。
此方法只适用于 \(k \ll n\) 的情况,因为当 \(k\) 与 \(n\) 比较接近时,其时间复杂度趋向于 \(O(n^2)\) ,非常耗时。
图 8-6 遍历寻找最大的 k 个元素
Tip
当 \(k = n\) 时,我们可以得到完整的有序序列,此时等价于“选择排序”算法。
8.3.2 方法二:排序
如图 8-7 所示,我们可以先对数组 nums
进行排序,再返回最右边的 \(k\) 个元素,时间复杂度为 \(O(n \log n)\) 。
显然,该方法“超额”完成任务了,因为我们只需找出最大的 \(k\) 个元素即可,而不需要排序其他元素。
图 8-7 排序寻找最大的 k 个元素
8.3.3 方法三:堆
我们可以基于堆更加高效地解决 Top-k 问题,流程如图 8-8 所示。
- 初始化一个小顶堆,其堆顶元素最小。
- 先将数组的前 \(k\) 个元素依次入堆。
- 从第 \(k + 1\) 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
- 遍历完成后,堆中保存的就是最大的 \(k\) 个元素。
图 8-8 基于堆寻找最大的 k 个元素
示例代码如下:
top_k.pydef top_k_heap(nums: list[int], k: int) -> list[int]:
"""基于堆查找数组中最大的 k 个元素"""
# 初始化小顶堆
heap = []
# 将数组的前 k 个元素入堆
for i in range(k):
heapq.heappush(heap, nums[i])
# 从第 k+1 个元素开始,保持堆的长度为 k
for i in range(k, len(nums)):
# 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > heap[0]:
heapq.heappop(heap)
heapq.heappush(heap, nums[i])
return heap
top_k.cpp/* 基于堆查找数组中最大的 k 个元素 */
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> heap;
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.push(nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.size(); i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.top()) {
heap.pop();
heap.push(nums[i]);
}
}
return heap;
}
top_k.java/* 基于堆查找数组中最大的 k 个元素 */
Queue<Integer> topKHeap(int[] nums, int k) {
// 初始化小顶堆
Queue<Integer> heap = new PriorityQueue<Integer>();
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.offer(nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.peek()) {
heap.poll();
heap.offer(nums[i]);
}
}
return heap;
}
top_k.cs/* 基于堆查找数组中最大的 k 个元素 */
PriorityQueue<int, int> TopKHeap(int[] nums, int k) {
// 初始化小顶堆
PriorityQueue<int, int> heap = new();
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.Enqueue(nums[i], nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.Length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.Peek()) {
heap.Dequeue();
heap.Enqueue(nums[i], nums[i]);
}
}
return heap;
}
top_k.go/* 基于堆查找数组中最大的 k 个元素 */
func topKHeap(nums []int, k int) *minHeap {
// 初始化小顶堆
h := &minHeap{}
heap.Init(h)
// 将数组的前 k 个元素入堆
for i := 0; i < k; i++ {
heap.Push(h, nums[i])
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for i := k; i < len(nums); i++ {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > h.Top().(int) {
heap.Pop(h)
heap.Push(h, nums[i])
}
}
return h
}
top_k.swift/* 基于堆查找数组中最大的 k 个元素 */
func topKHeap(nums: [Int], k: Int) -> [Int] {
// 初始化一个小顶堆,并将前 k 个元素建堆
var heap = Heap(nums.prefix(k))
// 从第 k+1 个元素开始,保持堆的长度为 k
for i in nums.indices.dropFirst(k) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > heap.min()! {
_ = heap.removeMin()
heap.insert(nums[i])
}
}
return heap.unordered
}
top_k.js/* 元素入堆 */
function pushMinHeap(maxHeap, val) {
// 元素取反
maxHeap.push(-val);
}
/* 元素出堆 */
function popMinHeap(maxHeap) {
// 元素取反
return -maxHeap.pop();
}
/* 访问堆顶元素 */
function peekMinHeap(maxHeap) {
// 元素取反
return -maxHeap.peek();
}
/* 取出堆中元素 */
function getMinHeap(maxHeap) {
// 元素取反
return maxHeap.getMaxHeap().map((num) => -num);
}
/* 基于堆查找数组中最大的 k 个元素 */
function topKHeap(nums, k) {
// 初始化小顶堆
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
const maxHeap = new MaxHeap([]);
// 将数组的前 k 个元素入堆
for (let i = 0; i < k; i++) {
pushMinHeap(maxHeap, nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (let i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > peekMinHeap(maxHeap)) {
popMinHeap(maxHeap);
pushMinHeap(maxHeap, nums[i]);
}
}
// 返回堆中元素
return getMinHeap(maxHeap);
}
top_k.ts/* 元素入堆 */
function pushMinHeap(maxHeap: MaxHeap, val: number): void {
// 元素取反
maxHeap.push(-val);
}
/* 元素出堆 */
function popMinHeap(maxHeap: MaxHeap): number {
// 元素取反
return -maxHeap.pop();
}
/* 访问堆顶元素 */
function peekMinHeap(maxHeap: MaxHeap): number {
// 元素取反
return -maxHeap.peek();
}
/* 取出堆中元素 */
function getMinHeap(maxHeap: MaxHeap): number[] {
// 元素取反
return maxHeap.getMaxHeap().map((num: number) => -num);
}
/* 基于堆查找数组中最大的 k 个元素 */
function topKHeap(nums: number[], k: number): number[] {
// 初始化小顶堆
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
const maxHeap = new MaxHeap([]);
// 将数组的前 k 个元素入堆
for (let i = 0; i < k; i++) {
pushMinHeap(maxHeap, nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (let i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > peekMinHeap(maxHeap)) {
popMinHeap(maxHeap);
pushMinHeap(maxHeap, nums[i]);
}
}
// 返回堆中元素
return getMinHeap(maxHeap);
}
top_k.dart/* 基于堆查找数组中最大的 k 个元素 */
MinHeap topKHeap(List<int> nums, int k) {
// 初始化小顶堆,将数组的前 k 个元素入堆
MinHeap heap = MinHeap(nums.sublist(0, k));
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.peek()) {
heap.pop();
heap.push(nums[i]);
}
}
return heap;
}
top_k.rs/* 基于堆查找数组中最大的 k 个元素 */
fn top_k_heap(nums: Vec<i32>, k: usize) -> BinaryHeap<Reverse<i32>> {
// BinaryHeap 是大顶堆,使用 Reverse 将元素取反,从而实现小顶堆
let mut heap = BinaryHeap::<Reverse<i32>>::new();
// 将数组的前 k 个元素入堆
for &num in nums.iter().take(k) {
heap.push(Reverse(num));
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for &num in nums.iter().skip(k) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if num > heap.peek().unwrap().0 {
heap.pop();
heap.push(Reverse(num));
}
}
heap
}
top_k.c/* 元素入堆 */
void pushMinHeap(MaxHeap *maxHeap, int val) {
// 元素取反
push(maxHeap, -val);
}
/* 元素出堆 */
int popMinHeap(MaxHeap *maxHeap) {
// 元素取反
return -pop(maxHeap);
}
/* 访问堆顶元素 */
int peekMinHeap(MaxHeap *maxHeap) {
// 元素取反
return -peek(maxHeap);
}
/* 取出堆中元素 */
int *getMinHeap(MaxHeap *maxHeap) {
// 将堆中所有元素取反并存入 res 数组
int *res = (int *)malloc(maxHeap->size * sizeof(int));
for (int i = 0; i < maxHeap->size; i++) {
res[i] = -maxHeap->data[i];
}
return res;
}
/* 取出堆中元素 */
int *getMinHeap(MaxHeap *maxHeap) {
// 将堆中所有元素取反并存入 res 数组
int *res = (int *)malloc(maxHeap->size * sizeof(int));
for (int i = 0; i < maxHeap->size; i++) {
res[i] = -maxHeap->data[i];
}
return res;
}
// 基于堆查找数组中最大的 k 个元素的函数
int *topKHeap(int *nums, int sizeNums, int k) {
// 初始化小顶堆
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
int *empty = (int *)malloc(0);
MaxHeap *maxHeap = newMaxHeap(empty, 0);
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
pushMinHeap(maxHeap, nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < sizeNums; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > peekMinHeap(maxHeap)) {
popMinHeap(maxHeap);
pushMinHeap(maxHeap, nums[i]);
}
}
int *res = getMinHeap(maxHeap);
// 释放内存
delMaxHeap(maxHeap);
return res;
}
top_k.kt/* 基于堆查找数组中最大的 k 个元素 */
fun topKHeap(nums: IntArray, k: Int): Queue<Int> {
// 初始化小顶堆
val heap = PriorityQueue<Int>()
// 将数组的前 k 个元素入堆
for (i in 0..<k) {
heap.offer(nums[i])
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (i in k..<nums.size) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.peek()) {
heap.poll()
heap.offer(nums[i])
}
}
return heap
}
top_k.rb### 基于堆查找数组中最大的 k 个元素 ###
def top_k_heap(nums, k)
# 初始化小顶堆
# 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
max_heap = MaxHeap.new([])
# 将数组的前 k 个元素入堆
for i in 0...k
push_min_heap(max_heap, nums[i])
end
# 从第 k+1 个元素开始,保持堆的长度为 k
for i in k...nums.length
# 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > peek_min_heap(max_heap)
pop_min_heap(max_heap)
push_min_heap(max_heap, nums[i])
end
end
get_min_heap(max_heap)
end
top_k.zig[class]{}-[func]{topKHeap}
总共执行了 \(n\) 轮入堆和出堆,堆的最大长度为 \(k\) ,因此时间复杂度为 \(O(n \log k)\) 。该方法的效率很高,当 \(k\) 较小时,时间复杂度趋向 \(O(n)\) ;当 \(k\) 较大时,时间复杂度不会超过 \(O(n \log n)\) 。
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大的 \(k\) 个元素的动态更新。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论