返回介绍

solution / 0600-0699 / 0654.Maximum Binary Tree / README

发布于 2024-06-17 01:03:35 字数 18655 浏览 0 评论 0 收藏 0

654. 最大二叉树

English Version

题目描述

给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建:

  1. 创建一个根节点,其值为 nums 中的最大值。
  2. 递归地在最大值 左边 的 子数组前缀上 构建左子树。
  3. 递归地在最大值 右边 的 子数组后缀上 构建右子树。

返回 _nums 构建的 __最大二叉树_

 

示例 1:

输入:nums = [3,2,1,6,0,5]
输出:[6,3,5,null,2,0,null,null,1]
解释:递归调用如下所示:
- [3,2,1,6,0,5] 中的最大值是 6 ,左边部分是 [3,2,1] ,右边部分是 [0,5] 。
  - [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
    - 空数组,无子节点。
    - [2,1] 中的最大值是 2 ,左边部分是 [] ,右边部分是 [1] 。
      - 空数组,无子节点。
      - 只有一个元素,所以子节点是一个值为 1 的节点。
  - [0,5] 中的最大值是 5 ,左边部分是 [0] ,右边部分是 [] 。
    - 只有一个元素,所以子节点是一个值为 0 的节点。
    - 空数组,无子节点。

示例 2:

输入:nums = [3,2,1]
输出:[3,null,2,null,1]

 

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000
  • nums 中的所有整数 互不相同

解法

方法一:递归

先找到数组 $nums$ 的最大元素所在的位置 $i$,将 $nums[i]$ 作为根节点,然后递归左右两侧的子数组,构建左右子树。

时间复杂度 $O(n^2)$,空间复杂度 $O(n)$,其中 $n$ 是数组的长度。

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
    def dfs(nums):
      if not nums:
        return None
      val = max(nums)
      i = nums.index(val)
      root = TreeNode(val)
      root.left = dfs(nums[:i])
      root.right = dfs(nums[i + 1 :])
      return root

    return dfs(nums)
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  private int[] nums;

  public TreeNode constructMaximumBinaryTree(int[] nums) {
    this.nums = nums;
    return dfs(0, nums.length - 1);
  }

  private TreeNode dfs(int l, int r) {
    if (l > r) {
      return null;
    }
    int i = l;
    for (int j = l; j <= r; ++j) {
      if (nums[i] < nums[j]) {
        i = j;
      }
    }
    TreeNode root = new TreeNode(nums[i]);
    root.left = dfs(l, i - 1);
    root.right = dfs(i + 1, r);
    return root;
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
    return dfs(nums, 0, nums.size() - 1);
  }

  TreeNode* dfs(vector<int>& nums, int l, int r) {
    if (l > r) return nullptr;
    int i = l;
    for (int j = l; j <= r; ++j) {
      if (nums[i] < nums[j]) {
        i = j;
      }
    }
    TreeNode* root = new TreeNode(nums[i]);
    root->left = dfs(nums, l, i - 1);
    root->right = dfs(nums, i + 1, r);
    return root;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func constructMaximumBinaryTree(nums []int) *TreeNode {
  var dfs func(l, r int) *TreeNode
  dfs = func(l, r int) *TreeNode {
    if l > r {
      return nil
    }
    i := l
    for j := l; j <= r; j++ {
      if nums[i] < nums[j] {
        i = j
      }
    }
    root := &TreeNode{Val: nums[i]}
    root.Left = dfs(l, i-1)
    root.Right = dfs(i+1, r)
    return root
  }
  return dfs(0, len(nums)-1)
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function constructMaximumBinaryTree(nums: number[]): TreeNode | null {
  const n = nums.length;
  if (n === 0) {
    return null;
  }
  const [val, i] = nums.reduce((r, v, i) => (r[0] < v ? [v, i] : r), [-1, 0]);
  return new TreeNode(
    val,
    constructMaximumBinaryTree(nums.slice(0, i)),
    constructMaximumBinaryTree(nums.slice(i + 1)),
  );
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//   TreeNode {
//     val,
//     left: None,
//     right: None
//   }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
  fn construct(nums: &Vec<i32>, start: usize, end: usize) -> Option<Rc<RefCell<TreeNode>>> {
    if start >= end {
      return None;
    }
    let mut idx = 0;
    let mut max_val = -1;
    for i in start..end {
      if nums[i] > max_val {
        idx = i;
        max_val = nums[i];
      }
    }
    Some(
      Rc::new(
        RefCell::new(TreeNode {
          val: max_val,
          left: Self::construct(nums, start, idx),
          right: Self::construct(nums, idx + 1, end),
        })
      )
    )
  }

  pub fn construct_maximum_binary_tree(nums: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
    Self::construct(&nums, 0, nums.len())
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   struct TreeNode *left;
 *   struct TreeNode *right;
 * };
 */

struct TreeNode* construct(int* nums, int start, int end) {
  if (start >= end) {
    return NULL;
  }
  int idx = 0;
  int maxVal = -1;
  for (int i = start; i < end; i++) {
    if (nums[i] > maxVal) {
      idx = i;
      maxVal = nums[i];
    }
  }
  struct TreeNode* res = (struct TreeNode*) malloc(sizeof(struct TreeNode));
  res->val = maxVal;
  res->left = construct(nums, start, idx);
  res->right = construct(nums, idx + 1, end);
  return res;
}

struct TreeNode* constructMaximumBinaryTree(int* nums, int numsSize) {
  return construct(nums, 0, numsSize);
}

方法二:线段树

方法一中,每次查找区间最大值,需要 $O(n)$ 的时间,我们可以借助线段树,将每次查询区间最大值的时间降至 $O(\log n)$。

最多需要查询 $n$ 次,因此,总的时间复杂度为 $O(n \times \log n)$,空间复杂度 $O(n)$,其中 $n$ 是数组的长度。

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
    def dfs(l, r):
      if l > r:
        return None
      val = tree.query(1, l, r)
      root = TreeNode(val)
      root.left = dfs(l, d[val] - 1)
      root.right = dfs(d[val] + 1, r)
      return root

    d = {v: i for i, v in enumerate(nums, 1)}
    tree = SegmentTree(nums)
    return dfs(1, len(nums))


class Node:
  def __init__(self):
    self.l = 0
    self.r = 0
    self.v = 0


class SegmentTree:
  def __init__(self, nums):
    self.nums = nums
    n = len(nums)
    self.tr = [Node() for _ in range(n << 2)]
    self.build(1, 1, n)

  def build(self, u, l, r):
    self.tr[u].l, self.tr[u].r = l, r
    if l == r:
      self.tr[u].v = self.nums[l - 1]
      return
    mid = (l + r) >> 1
    self.build(u << 1, l, mid)
    self.build(u << 1 | 1, mid + 1, r)
    self.pushup(u)

  def query(self, u, l, r):
    if self.tr[u].l >= l and self.tr[u].r <= r:
      return self.tr[u].v
    mid = (self.tr[u].l + self.tr[u].r) >> 1
    v = 0
    if l <= mid:
      v = max(v, self.query(u << 1, l, r))
    if r > mid:
      v = max(v, self.query(u << 1 | 1, l, r))
    return v

  def pushup(self, u):
    self.tr[u].v = max(self.tr[u << 1].v, self.tr[u << 1 | 1].v)
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  private SegmentTree tree;
  private int[] nums;
  private static int[] d = new int[1010];

  public TreeNode constructMaximumBinaryTree(int[] nums) {
    int n = nums.length;
    this.nums = nums;
    tree = new SegmentTree(nums);
    for (int i = 0; i < n; ++i) {
      d[nums[i]] = i + 1;
    }
    return dfs(1, n);
  }

  private TreeNode dfs(int l, int r) {
    if (l > r) {
      return null;
    }
    int val = tree.query(1, l, r);
    TreeNode root = new TreeNode(val);
    root.left = dfs(l, d[val] - 1);
    root.right = dfs(d[val] + 1, r);
    return root;
  }
}

class Node {
  int l;
  int r;
  int v;
}

class SegmentTree {
  Node[] tr;
  int[] nums;

  public SegmentTree(int[] nums) {
    int n = nums.length;
    this.nums = nums;
    tr = new Node[n << 2];
    for (int i = 0; i < tr.length; ++i) {
      tr[i] = new Node();
    }
    build(1, 1, n);
  }

  private void build(int u, int l, int r) {
    tr[u].l = l;
    tr[u].r = r;
    if (l == r) {
      tr[u].v = nums[l - 1];
      return;
    }
    int mid = (l + r) >> 1;
    build(u << 1, l, mid);
    build(u << 1 | 1, mid + 1, r);
    pushup(u);
  }

  public int query(int u, int l, int r) {
    if (tr[u].l >= l && tr[u].r <= r) {
      return tr[u].v;
    }
    int mid = (tr[u].l + tr[u].r) >> 1;
    int v = 0;
    if (l <= mid) {
      v = query(u << 1, l, r);
    }
    if (r > mid) {
      v = Math.max(v, query(u << 1 | 1, l, r));
    }
    return v;
  }

  private void pushup(int u) {
    tr[u].v = Math.max(tr[u << 1].v, tr[u << 1 | 1].v);
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Node {
public:
  int l, r, v;
};

class SegmentTree {
public:
  vector<Node*> tr;
  vector<int> nums;

  SegmentTree(vector<int>& nums) {
    this->nums = nums;
    int n = nums.size();
    tr.resize(n << 2);
    for (int i = 0; i < tr.size(); ++i) tr[i] = new Node();
    build(1, 1, n);
  }

  void build(int u, int l, int r) {
    tr[u]->l = l;
    tr[u]->r = r;
    if (l == r) {
      tr[u]->v = nums[l - 1];
      return;
    }
    int mid = (l + r) >> 1;
    build(u << 1, l, mid);
    build(u << 1 | 1, mid + 1, r);
    pushup(u);
  }

  int query(int u, int l, int r) {
    if (tr[u]->l >= l && tr[u]->r <= r) return tr[u]->v;
    int mid = (tr[u]->l + tr[u]->r) >> 1;
    int v = 0;
    if (l <= mid) v = query(u << 1, l, r);
    if (r > mid) v = max(v, query(u << 1 | 1, l, r));
    return v;
  }

  void pushup(int u) {
    tr[u]->v = max(tr[u << 1]->v, tr[u << 1 | 1]->v);
  }
};

class Solution {
public:
  SegmentTree* tree;
  vector<int> nums;
  vector<int> d;

  TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
    tree = new SegmentTree(nums);
    this->nums = nums;
    d.assign(1010, 0);
    int n = nums.size();
    for (int i = 0; i < n; ++i) d[nums[i]] = i + 1;
    return dfs(1, nums.size());
  }

  TreeNode* dfs(int l, int r) {
    if (l > r) {
      return nullptr;
    }
    int val = tree->query(1, l, r);
    TreeNode* root = new TreeNode(val);
    root->left = dfs(l, d[val] - 1);
    root->right = dfs(d[val] + 1, r);
    return root;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func constructMaximumBinaryTree(nums []int) *TreeNode {
  d := make([]int, 1010)
  for i, v := range nums {
    d[v] = i + 1
  }
  tree := newSegmentTree(nums)
  var dfs func(l, r int) *TreeNode
  dfs = func(l, r int) *TreeNode {
    if l > r {
      return nil
    }
    val := tree.query(1, l, r)
    root := &TreeNode{Val: val}
    root.Left = dfs(l, d[val]-1)
    root.Right = dfs(d[val]+1, r)
    return root
  }

  return dfs(1, len(nums))
}

type node struct {
  l int
  r int
  v int
}

type segmentTree struct {
  nums []int
  tr   []*node
}

func newSegmentTree(nums []int) *segmentTree {
  n := len(nums)
  tr := make([]*node, n<<2)
  for i := range tr {
    tr[i] = &node{}
  }
  t := &segmentTree{nums, tr}
  t.build(1, 1, n)
  return t
}

func (t *segmentTree) build(u, l, r int) {
  t.tr[u].l, t.tr[u].r = l, r
  if l == r {
    t.tr[u].v = t.nums[l-1]
    return
  }
  mid := (l + r) >> 1
  t.build(u<<1, l, mid)
  t.build(u<<1|1, mid+1, r)
  t.pushup(u)
}

func (t *segmentTree) query(u, l, r int) int {
  if t.tr[u].l >= l && t.tr[u].r <= r {
    return t.tr[u].v
  }
  mid := (t.tr[u].l + t.tr[u].r) >> 1
  v := 0
  if l <= mid {
    v = t.query(u<<1, l, r)
  }
  if r > mid {
    v = max(v, t.query(u<<1|1, l, r))
  }
  return v
}

func (t *segmentTree) pushup(u int) {
  t.tr[u].v = max(t.tr[u<<1].v, t.tr[u<<1|1].v)
}

方法三:单调栈

题目表达了一个意思:如果 $nums$ 中间有一个数字 $v$,找出它左右两侧最大的数,这两个最大的数应该比 $v$ 小。

了解单调栈的朋友,或许会注意到:

当我们尝试向栈中压入一个数字 $v$ 时,如果栈顶元素比 $v$ 小,则循环弹出栈顶元素,并记录最后一个弹出的元素 $last$。那么循环结束,$last$ 必须位于 $v$ 的左侧,因为 $last$ 是 $v$ 的左侧最大的数。令 $node(val=v).left$ 指向 $last$。

如果此时存在栈顶元素,栈顶元素一定大于 $v$。$v$ 成为栈顶元素的候选右子树节点。令 $stk.top().right$ 指向 $v$。然后 $v$ 入栈。

遍历结束,栈底元素成为树的根节点。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
    stk = []
    for v in nums:
      node = TreeNode(v)
      last = None
      while stk and stk[-1].val < v:
        last = stk.pop()
      node.left = last
      if stk:
        stk[-1].right = node
      stk.append(node)
    return stk[0]
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public TreeNode constructMaximumBinaryTree(int[] nums) {
    Deque<TreeNode> stk = new ArrayDeque<>();
    for (int v : nums) {
      TreeNode node = new TreeNode(v);
      TreeNode last = null;
      while (!stk.isEmpty() && stk.peek().val < v) {
        last = stk.pop();
      }
      node.left = last;
      if (!stk.isEmpty()) {
        stk.peek().right = node;
      }
      stk.push(node);
    }
    return stk.getLast();
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
    stack<TreeNode*> stk;
    for (int v : nums) {
      TreeNode* node = new TreeNode(v);
      TreeNode* last = nullptr;
      while (!stk.empty() && stk.top()->val < v) {
        last = stk.top();
        stk.pop();
      }
      node->left = last;
      if (!stk.empty()) {
        stk.top()->right = node;
      }
      stk.push(node);
    }
    while (stk.size() > 1) {
      stk.pop();
    }
    return stk.top();
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func constructMaximumBinaryTree(nums []int) *TreeNode {
  stk := []*TreeNode{}
  for _, v := range nums {
    node := &TreeNode{Val: v}
    var last *TreeNode
    for len(stk) > 0 && stk[len(stk)-1].Val < v {
      last = stk[len(stk)-1]
      stk = stk[:len(stk)-1]
    }
    node.Left = last
    if len(stk) > 0 {
      stk[len(stk)-1].Right = node
    }
    stk = append(stk, node)
  }
  return stk[0]
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文