返回介绍

solution / 1400-1499 / 1488.Avoid Flood in The City / README

发布于 2024-06-17 01:03:19 字数 18881 浏览 0 评论 0 收藏 0

1488. 避免洪水泛滥

English Version

题目描述

你的国家有无数个湖泊,所有湖泊一开始都是空的。当第 n 个湖泊下雨前是空的,那么它就会装满水。如果第 n 个湖泊下雨前是 满的 ,这个湖泊会发生 洪水 。你的目标是避免任意一个湖泊发生洪水。

给你一个整数数组 rains ,其中:

  • rains[i] > 0 表示第 i 天时,第 rains[i] 个湖泊会下雨。
  • rains[i] == 0 表示第 i 天没有湖泊会下雨,你可以选择 一个 湖泊并 抽干 这个湖泊的水。

请返回一个数组_ _ans ,满足:

  • ans.length == rains.length
  • 如果 rains[i] > 0 ,那么ans[i] == -1 。
  • 如果 rains[i] == 0 ,ans[i] 是你第 i 天选择抽干的湖泊。

如果有多种可行解,请返回它们中的 任意一个 。如果没办法阻止洪水,请返回一个 空的数组 。

请注意,如果你选择抽干一个装满水的湖泊,它会变成一个空的湖泊。但如果你选择抽干一个空的湖泊,那么将无事发生。

 

示例 1:

输入:rains = [1,2,3,4]
输出:[-1,-1,-1,-1]
解释:第一天后,装满水的湖泊包括 [1]
第二天后,装满水的湖泊包括 [1,2]
第三天后,装满水的湖泊包括 [1,2,3]
第四天后,装满水的湖泊包括 [1,2,3,4]
没有哪一天你可以抽干任何湖泊的水,也没有湖泊会发生洪水。

示例 2:

输入:rains = [1,2,0,0,2,1]
输出:[-1,-1,2,1,-1,-1]
解释:第一天后,装满水的湖泊包括 [1]
第二天后,装满水的湖泊包括 [1,2]
第三天后,我们抽干湖泊 2 。所以剩下装满水的湖泊包括 [1]
第四天后,我们抽干湖泊 1 。所以暂时没有装满水的湖泊了。
第五天后,装满水的湖泊包括 [2]。
第六天后,装满水的湖泊包括 [1,2]。
可以看出,这个方案下不会有洪水发生。同时, [-1,-1,1,2,-1,-1] 也是另一个可行的没有洪水的方案。

示例 3:

输入:rains = [1,2,0,1,2]
输出:[]
解释:第二天后,装满水的湖泊包括 [1,2]。我们可以在第三天抽干一个湖泊的水。
但第三天后,湖泊 1 和 2 都会再次下雨,所以不管我们第三天抽干哪个湖泊的水,另一个湖泊都会发生洪水。

 

提示:

  • 1 <= rains.length <= 105
  • 0 <= rains[i] <= 109

解法

方法一:贪心 + 二分查找

我们将所有晴天都存入 $sunny$ 数组或者有序集合中,使用哈希表 $rainy$ 记录每个湖泊最近一次下雨的日期。初始化答案数组 $ans$ 每个元素为 $-1$。

接下来,我们遍历 $rains$ 数组。对于每个下雨的日期 $i$,如果 $rainy[rains[i]]$ 存在,说明该湖泊在之前下过雨,那么我们需要找到 $sunny$ 数组中第一个大于 $rainy[rains[i]]$ 的日期,将其替换为下雨的日期,否则说明无法阻止洪水,返回空数组。对于没下雨的日期 $i$,我们将 $i$ 存入 $sunny$ 数组中,并且将 $ans[i]$ 置为 $1$。

遍历结束,返回答案数组。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为 $rains$ 数组的长度。

from sortedcontainers import SortedList


class Solution:
  def avoidFlood(self, rains: List[int]) -> List[int]:
    n = len(rains)
    ans = [-1] * n
    sunny = SortedList()
    rainy = {}
    for i, v in enumerate(rains):
      if v:
        if v in rainy:
          idx = sunny.bisect_right(rainy[v])
          if idx == len(sunny):
            return []
          ans[sunny[idx]] = v
          sunny.discard(sunny[idx])
        rainy[v] = i
      else:
        sunny.add(i)
        ans[i] = 1
    return ans
class Solution {
  public int[] avoidFlood(int[] rains) {
    int n = rains.length;
    int[] ans = new int[n];
    Arrays.fill(ans, -1);
    TreeSet<Integer> sunny = new TreeSet<>();
    Map<Integer, Integer> rainy = new HashMap<>();
    for (int i = 0; i < n; ++i) {
      int v = rains[i];
      if (v > 0) {
        if (rainy.containsKey(v)) {
          Integer t = sunny.higher(rainy.get(v));
          if (t == null) {
            return new int[0];
          }
          ans[t] = v;
          sunny.remove(t);
        }
        rainy.put(v, i);
      } else {
        sunny.add(i);
        ans[i] = 1;
      }
    }
    return ans;
  }
}
class Solution {
public:
  vector<int> avoidFlood(vector<int>& rains) {
    int n = rains.size();
    vector<int> ans(n, -1);
    set<int> sunny;
    unordered_map<int, int> rainy;
    for (int i = 0; i < n; ++i) {
      int v = rains[i];
      if (v) {
        if (rainy.count(v)) {
          auto it = sunny.upper_bound(rainy[v]);
          if (it == sunny.end()) {
            return {};
          }
          ans[*it] = v;
          sunny.erase(it);
        }
        rainy[v] = i;
      } else {
        sunny.insert(i);
        ans[i] = 1;
      }
    }
    return ans;
  }
};
func avoidFlood(rains []int) []int {
  n := len(rains)
  ans := make([]int, n)
  for i := range ans {
    ans[i] = -1
  }
  sunny := []int{}
  rainy := map[int]int{}
  for i, v := range rains {
    if v > 0 {
      if j, ok := rainy[v]; ok {
        idx := sort.SearchInts(sunny, j+1)
        if idx == len(sunny) {
          return []int{}
        }
        ans[sunny[idx]] = v
        sunny = append(sunny[:idx], sunny[idx+1:]...)
      }
      rainy[v] = i
    } else {
      sunny = append(sunny, i)
      ans[i] = 1
    }
  }
  return ans
}
function avoidFlood(rains: number[]): number[] {
  const n = rains.length;
  const ans: number[] = new Array(n).fill(-1);
  const sunny: TreeSet<number> = new TreeSet<number>();
  const rainy: Map<number, number> = new Map<number, number>();
  for (let i = 0; i < n; ++i) {
    const v = rains[i];
    if (v > 0) {
      if (rainy.has(v)) {
        const t = sunny.higher(rainy.get(v)!);
        if (t === undefined) {
          return [];
        }
        ans[t] = v;
        sunny.delete(t);
      }
      rainy.set(v, i);
    } else {
      sunny.add(i);
      ans[i] = 1;
    }
  }
  return ans;
}

type Compare<T> = (lhs: T, rhs: T) => number;

class RBTreeNode<T = number> {
  data: T;
  count: number;
  left: RBTreeNode<T> | null;
  right: RBTreeNode<T> | null;
  parent: RBTreeNode<T> | null;
  color: number;
  constructor(data: T) {
    this.data = data;
    this.left = this.right = this.parent = null;
    this.color = 0;
    this.count = 1;
  }

  sibling(): RBTreeNode<T> | null {
    if (!this.parent) return null; // sibling null if no parent
    return this.isOnLeft() ? this.parent.right : this.parent.left;
  }

  isOnLeft(): boolean {
    return this === this.parent!.left;
  }

  hasRedChild(): boolean {
    return (
      Boolean(this.left && this.left.color === 0) ||
      Boolean(this.right && this.right.color === 0)
    );
  }
}

class RBTree<T> {
  root: RBTreeNode<T> | null;
  lt: (l: T, r: T) => boolean;
  constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
    this.root = null;
    this.lt = (l: T, r: T) => compare(l, r) < 0;
  }

  rotateLeft(pt: RBTreeNode<T>): void {
    const right = pt.right!;
    pt.right = right.left;

    if (pt.right) pt.right.parent = pt;
    right.parent = pt.parent;

    if (!pt.parent) this.root = right;
    else if (pt === pt.parent.left) pt.parent.left = right;
    else pt.parent.right = right;

    right.left = pt;
    pt.parent = right;
  }

  rotateRight(pt: RBTreeNode<T>): void {
    const left = pt.left!;
    pt.left = left.right;

    if (pt.left) pt.left.parent = pt;
    left.parent = pt.parent;

    if (!pt.parent) this.root = left;
    else if (pt === pt.parent.left) pt.parent.left = left;
    else pt.parent.right = left;

    left.right = pt;
    pt.parent = left;
  }

  swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
    const tmp = p1.color;
    p1.color = p2.color;
    p2.color = tmp;
  }

  swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
    const tmp = p1.data;
    p1.data = p2.data;
    p2.data = tmp;
  }

  fixAfterInsert(pt: RBTreeNode<T>): void {
    let parent = null;
    let grandParent = null;

    while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
      parent = pt.parent;
      grandParent = pt.parent.parent;

      /*  Case : A
        Parent of pt is left child of Grand-parent of pt */
      if (parent === grandParent?.left) {
        const uncle = grandParent.right;

        /* Case : 1
           The uncle of pt is also red
           Only Recoloring required */
        if (uncle && uncle.color === 0) {
          grandParent.color = 0;
          parent.color = 1;
          uncle.color = 1;
          pt = grandParent;
        } else {
          /* Case : 2
             pt is right child of its parent
             Left-rotation required */
          if (pt === parent.right) {
            this.rotateLeft(parent);
            pt = parent;
            parent = pt.parent;
          }

          /* Case : 3
             pt is left child of its parent
             Right-rotation required */
          this.rotateRight(grandParent);
          this.swapColor(parent!, grandParent);
          pt = parent!;
        }
      } else {
        /* Case : B
         Parent of pt is right child of Grand-parent of pt */
        const uncle = grandParent!.left;

        /*  Case : 1
          The uncle of pt is also red
          Only Recoloring required */
        if (uncle != null && uncle.color === 0) {
          grandParent!.color = 0;
          parent.color = 1;
          uncle.color = 1;
          pt = grandParent!;
        } else {
          /* Case : 2
             pt is left child of its parent
             Right-rotation required */
          if (pt === parent.left) {
            this.rotateRight(parent);
            pt = parent;
            parent = pt.parent;
          }

          /* Case : 3
             pt is right child of its parent
             Left-rotation required */
          this.rotateLeft(grandParent!);
          this.swapColor(parent!, grandParent!);
          pt = parent!;
        }
      }
    }
    this.root!.color = 1;
  }

  delete(val: T): boolean {
    const node = this.find(val);
    if (!node) return false;
    node.count--;
    if (!node.count) this.deleteNode(node);
    return true;
  }

  deleteAll(val: T): boolean {
    const node = this.find(val);
    if (!node) return false;
    this.deleteNode(node);
    return true;
  }

  deleteNode(v: RBTreeNode<T>): void {
    const u = BSTreplace(v);

    // True when u and v are both black
    const uvBlack = (u === null || u.color === 1) && v.color === 1;
    const parent = v.parent!;

    if (!u) {
      // u is null therefore v is leaf
      if (v === this.root) this.root = null;
      // v is root, making root null
      else {
        if (uvBlack) {
          // u and v both black
          // v is leaf, fix double black at v
          this.fixDoubleBlack(v);
        } else {
          // u or v is red
          if (v.sibling()) {
            // sibling is not null, make it red"
            v.sibling()!.color = 0;
          }
        }
        // delete v from the tree
        if (v.isOnLeft()) parent.left = null;
        else parent.right = null;
      }
      return;
    }

    if (!v.left || !v.right) {
      // v has 1 child
      if (v === this.root) {
        // v is root, assign the value of u to v, and delete u
        v.data = u.data;
        v.left = v.right = null;
      } else {
        // Detach v from tree and move u up
        if (v.isOnLeft()) parent.left = u;
        else parent.right = u;
        u.parent = parent;
        if (uvBlack) this.fixDoubleBlack(u);
        // u and v both black, fix double black at u
        else u.color = 1; // u or v red, color u black
      }
      return;
    }

    // v has 2 children, swap data with successor and recurse
    this.swapData(u, v);
    this.deleteNode(u);

    // find node that replaces a deleted node in BST
    function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
      // when node have 2 children
      if (x.left && x.right) return successor(x.right);
      // when leaf
      if (!x.left && !x.right) return null;
      // when single child
      return x.left ?? x.right;
    }
    // find node that do not have a left child
    // in the subtree of the given node
    function successor(x: RBTreeNode<T>): RBTreeNode<T> {
      let temp = x;
      while (temp.left) temp = temp.left;
      return temp;
    }
  }

  fixDoubleBlack(x: RBTreeNode<T>): void {
    if (x === this.root) return; // Reached root

    const sibling = x.sibling();
    const parent = x.parent!;
    if (!sibling) {
      // No sibiling, double black pushed up
      this.fixDoubleBlack(parent);
    } else {
      if (sibling.color === 0) {
        // Sibling red
        parent.color = 0;
        sibling.color = 1;
        if (sibling.isOnLeft()) this.rotateRight(parent);
        // left case
        else this.rotateLeft(parent); // right case
        this.fixDoubleBlack(x);
      } else {
        // Sibling black
        if (sibling.hasRedChild()) {
          // at least 1 red children
          if (sibling.left && sibling.left.color === 0) {
            if (sibling.isOnLeft()) {
              // left left
              sibling.left.color = sibling.color;
              sibling.color = parent.color;
              this.rotateRight(parent);
            } else {
              // right left
              sibling.left.color = parent.color;
              this.rotateRight(sibling);
              this.rotateLeft(parent);
            }
          } else {
            if (sibling.isOnLeft()) {
              // left right
              sibling.right!.color = parent.color;
              this.rotateLeft(sibling);
              this.rotateRight(parent);
            } else {
              // right right
              sibling.right!.color = sibling.color;
              sibling.color = parent.color;
              this.rotateLeft(parent);
            }
          }
          parent.color = 1;
        } else {
          // 2 black children
          sibling.color = 0;
          if (parent.color === 1) this.fixDoubleBlack(parent);
          else parent.color = 1;
        }
      }
    }
  }

  insert(data: T): boolean {
    // search for a position to insert
    let parent = this.root;
    while (parent) {
      if (this.lt(data, parent.data)) {
        if (!parent.left) break;
        else parent = parent.left;
      } else if (this.lt(parent.data, data)) {
        if (!parent.right) break;
        else parent = parent.right;
      } else break;
    }

    // insert node into parent
    const node = new RBTreeNode(data);
    if (!parent) this.root = node;
    else if (this.lt(node.data, parent.data)) parent.left = node;
    else if (this.lt(parent.data, node.data)) parent.right = node;
    else {
      parent.count++;
      return false;
    }
    node.parent = parent;
    this.fixAfterInsert(node);
    return true;
  }

  find(data: T): RBTreeNode<T> | null {
    let p = this.root;
    while (p) {
      if (this.lt(data, p.data)) {
        p = p.left;
      } else if (this.lt(p.data, data)) {
        p = p.right;
      } else break;
    }
    return p ?? null;
  }

  *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
    if (!root) return;
    for (const v of this.inOrder(root.left!)) yield v;
    yield root.data;
    for (const v of this.inOrder(root.right!)) yield v;
  }

  *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
    if (!root) return;
    for (const v of this.reverseInOrder(root.right!)) yield v;
    yield root.data;
    for (const v of this.reverseInOrder(root.left!)) yield v;
  }
}

class TreeSet<T = number> {
  _size: number;
  tree: RBTree<T>;
  compare: Compare<T>;
  constructor(
    collection: T[] | Compare<T> = [],
    compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
  ) {
    if (typeof collection === 'function') {
      compare = collection;
      collection = [];
    }
    this._size = 0;
    this.compare = compare;
    this.tree = new RBTree(compare);
    for (const val of collection) this.add(val);
  }

  size(): number {
    return this._size;
  }

  has(val: T): boolean {
    return !!this.tree.find(val);
  }

  add(val: T): boolean {
    const successful = this.tree.insert(val);
    this._size += successful ? 1 : 0;
    return successful;
  }

  delete(val: T): boolean {
    const deleted = this.tree.deleteAll(val);
    this._size -= deleted ? 1 : 0;
    return deleted;
  }

  ceil(val: T): T | undefined {
    let p = this.tree.root;
    let higher = null;
    while (p) {
      if (this.compare(p.data, val) >= 0) {
        higher = p;
        p = p.left;
      } else {
        p = p.right;
      }
    }
    return higher?.data;
  }

  floor(val: T): T | undefined {
    let p = this.tree.root;
    let lower = null;
    while (p) {
      if (this.compare(val, p.data) >= 0) {
        lower = p;
        p = p.right;
      } else {
        p = p.left;
      }
    }
    return lower?.data;
  }

  higher(val: T): T | undefined {
    let p = this.tree.root;
    let higher = null;
    while (p) {
      if (this.compare(val, p.data) < 0) {
        higher = p;
        p = p.left;
      } else {
        p = p.right;
      }
    }
    return higher?.data;
  }

  lower(val: T): T | undefined {
    let p = this.tree.root;
    let lower = null;
    while (p) {
      if (this.compare(p.data, val) < 0) {
        lower = p;
        p = p.right;
      } else {
        p = p.left;
      }
    }
    return lower?.data;
  }

  first(): T | undefined {
    return this.tree.inOrder().next().value;
  }

  last(): T | undefined {
    return this.tree.reverseInOrder().next().value;
  }

  shift(): T | undefined {
    const first = this.first();
    if (first === undefined) return undefined;
    this.delete(first);
    return first;
  }

  pop(): T | undefined {
    const last = this.last();
    if (last === undefined) return undefined;
    this.delete(last);
    return last;
  }

  *[Symbol.iterator](): Generator<T, void, void> {
    for (const val of this.values()) yield val;
  }

  *keys(): Generator<T, void, void> {
    for (const val of this.values()) yield val;
  }

  *values(): Generator<T, undefined, void> {
    for (const val of this.tree.inOrder()) yield val;
    return undefined;
  }

  /**
   * Return a generator for reverse order traversing the set
   */
  *rvalues(): Generator<T, undefined, void> {
    for (const val of this.tree.reverseInOrder()) yield val;
    return undefined;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文