12.3 构建树问题
Question
给定一棵二叉树的前序遍历 preorder
和中序遍历 inorder
,请从中构建二叉树,返回二叉树的根节点。假设二叉树中没有值重复的节点(如图 12-5 所示)。
图 12-5 构建二叉树的示例数据
1. 判断是否为分治问题
原问题定义为从 preorder
和 inorder
构建二叉树,是一个典型的分治问题。
- 问题可以分解:从分治的角度切入,我们可以将原问题划分为两个子问题:构建左子树、构建右子树,加上一步操作:初始化根节点。而对于每棵子树(子问题),我们仍然可以复用以上划分方法,将其划分为更小的子树(子问题),直至达到最小子问题(空子树)时终止。
- 子问题是独立的:左子树和右子树是相互独立的,它们之间没有交集。在构建左子树时,我们只需关注中序遍历和前序遍历中与左子树对应的部分。右子树同理。
- 子问题的解可以合并:一旦得到了左子树和右子树(子问题的解),我们就可以将它们链接到根节点上,得到原问题的解。
2. 如何划分子树
根据以上分析,这道题可以使用分治来求解,但如何通过前序遍历 preorder
和中序遍历 inorder
来划分左子树和右子树呢?
根据定义,preorder
和 inorder
都可以划分为三个部分。
- 前序遍历:
[ 根节点 | 左子树 | 右子树 ]
,例如图 12-5 的树对应[ 3 | 9 | 2 1 7 ]
。 - 中序遍历:
[ 左子树 | 根节点 | 右子树 ]
,例如图 12-5 的树对应[ 9 | 3 | 1 2 7 ]
。
以上图数据为例,我们可以通过图 12-6 所示的步骤得到划分结果。
- 前序遍历的首元素 3 是根节点的值。
- 查找根节点 3 在
inorder
中的索引,利用该索引可将inorder
划分为[ 9 | 3 | 1 2 7 ]
。 - 根据
inorder
的划分结果,易得左子树和右子树的节点数量分别为 1 和 3 ,从而可将preorder
划分为[ 3 | 9 | 2 1 7 ]
。
图 12-6 在前序遍历和中序遍历中划分子树
3. 基于变量描述子树区间
根据以上划分方法,我们已经得到根节点、左子树、右子树在 preorder
和 inorder
中的索引区间。而为了描述这些索引区间,我们需要借助几个指针变量。
- 将当前树的根节点在
preorder
中的索引记为 \(i\) 。 - 将当前树的根节点在
inorder
中的索引记为 \(m\) 。 - 将当前树在
inorder
中的索引区间记为 \([l, r]\) 。
如表 12-1 所示,通过以上变量即可表示根节点在 preorder
中的索引,以及子树在 inorder
中的索引区间。
表 12-1 根节点和子树在前序遍历和中序遍历中的索引
根节点在 preorder 中的索引 | 子树在 inorder 中的索引区间 | |
---|---|---|
当前树 | \(i\) | \([l, r]\) |
左子树 | \(i + 1\) | \([l, m-1]\) |
右子树 | \(i + 1 + (m - l)\) | \([m+1, r]\) |
请注意,右子树根节点索引中的 \((m-l)\) 的含义是“左子树的节点数量”,建议结合图 12-7 理解。
图 12-7 根节点和左右子树的索引区间表示
4. 代码实现
为了提升查询 \(m\) 的效率,我们借助一个哈希表 hmap
来存储数组 inorder
中元素到索引的映射:
def dfs(
preorder: list[int],
inorder_map: dict[int, int],
i: int,
l: int,
r: int,
) -> TreeNode | None:
"""构建二叉树:分治"""
# 子树区间为空时终止
if r - l < 0:
return None
# 初始化根节点
root = TreeNode(preorder[i])
# 查询 m ,从而划分左右子树
m = inorder_map[preorder[i]]
# 子问题:构建左子树
root.left = dfs(preorder, inorder_map, i + 1, l, m - 1)
# 子问题:构建右子树
root.right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r)
# 返回根节点
return root
def build_tree(preorder: list[int], inorder: list[int]) -> TreeNode | None:
"""构建二叉树"""
# 初始化哈希表,存储 inorder 元素到索引的映射
inorder_map = {val: i for i, val in enumerate(inorder)}
root = dfs(preorder, inorder_map, 0, 0, len(inorder) - 1)
return root
build_tree.cpp/* 构建二叉树:分治 */
TreeNode *dfs(vector<int> &preorder, unordered_map<int, int> &inorderMap, int i, int l, int r) {
// 子树区间为空时终止
if (r - l < 0)
return NULL;
// 初始化根节点
TreeNode *root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = inorderMap[preorder[i]];
// 子问题:构建左子树
root->left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
unordered_map<int, int> inorderMap;
for (int i = 0; i < inorder.size(); i++) {
inorderMap[inorder[i]] = i;
}
TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorder.size() - 1);
return root;
}
build_tree.java/* 构建二叉树:分治 */
TreeNode dfs(int[] preorder, Map<Integer, Integer> inorderMap, int i, int l, int r) {
// 子树区间为空时终止
if (r - l < 0)
return null;
// 初始化根节点
TreeNode root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = inorderMap.get(preorder[i]);
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode buildTree(int[] preorder, int[] inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
Map<Integer, Integer> inorderMap = new HashMap<>();
for (int i = 0; i < inorder.length; i++) {
inorderMap.put(inorder[i], i);
}
TreeNode root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
return root;
}
build_tree.cs/* 构建二叉树:分治 */
TreeNode? DFS(int[] preorder, Dictionary<int, int> inorderMap, int i, int l, int r) {
// 子树区间为空时终止
if (r - l < 0)
return null;
// 初始化根节点
TreeNode root = new(preorder[i]);
// 查询 m ,从而划分左右子树
int m = inorderMap[preorder[i]];
// 子问题:构建左子树
root.left = DFS(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = DFS(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode? BuildTree(int[] preorder, int[] inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
Dictionary<int, int> inorderMap = [];
for (int i = 0; i < inorder.Length; i++) {
inorderMap.TryAdd(inorder[i], i);
}
TreeNode? root = DFS(preorder, inorderMap, 0, 0, inorder.Length - 1);
return root;
}
build_tree.go/* 构建二叉树:分治 */
func dfsBuildTree(preorder []int, inorderMap map[int]int, i, l, r int) *TreeNode {
// 子树区间为空时终止
if r-l < 0 {
return nil
}
// 初始化根节点
root := NewTreeNode(preorder[i])
// 查询 m ,从而划分左右子树
m := inorderMap[preorder[i]]
// 子问题:构建左子树
root.Left = dfsBuildTree(preorder, inorderMap, i+1, l, m-1)
// 子问题:构建右子树
root.Right = dfsBuildTree(preorder, inorderMap, i+1+m-l, m+1, r)
// 返回根节点
return root
}
/* 构建二叉树 */
func buildTree(preorder, inorder []int) *TreeNode {
// 初始化哈希表,存储 inorder 元素到索引的映射
inorderMap := make(map[int]int, len(inorder))
for i := 0; i < len(inorder); i++ {
inorderMap[inorder[i]] = i
}
root := dfsBuildTree(preorder, inorderMap, 0, 0, len(inorder)-1)
return root
}
build_tree.swift/* 构建二叉树:分治 */
func dfs(preorder: [Int], inorderMap: [Int: Int], i: Int, l: Int, r: Int) -> TreeNode? {
// 子树区间为空时终止
if r - l < 0 {
return nil
}
// 初始化根节点
let root = TreeNode(x: preorder[i])
// 查询 m ,从而划分左右子树
let m = inorderMap[preorder[i]]!
// 子问题:构建左子树
root.left = dfs(preorder: preorder, inorderMap: inorderMap, i: i + 1, l: l, r: m - 1)
// 子问题:构建右子树
root.right = dfs(preorder: preorder, inorderMap: inorderMap, i: i + 1 + m - l, l: m + 1, r: r)
// 返回根节点
return root
}
/* 构建二叉树 */
func buildTree(preorder: [Int], inorder: [Int]) -> TreeNode? {
// 初始化哈希表,存储 inorder 元素到索引的映射
let inorderMap = inorder.enumerated().reduce(into: [:]) { $0[$1.element] = $1.offset }
return dfs(preorder: preorder, inorderMap: inorderMap, i: inorder.startIndex, l: inorder.startIndex, r: inorder.endIndex - 1)
}
build_tree.js/* 构建二叉树:分治 */
function dfs(preorder, inorderMap, i, l, r) {
// 子树区间为空时终止
if (r - l < 0) return null;
// 初始化根节点
const root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
const m = inorderMap.get(preorder[i]);
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
function buildTree(preorder, inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
let inorderMap = new Map();
for (let i = 0; i < inorder.length; i++) {
inorderMap.set(inorder[i], i);
}
const root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
return root;
}
build_tree.ts/* 构建二叉树:分治 */
function dfs(
preorder: number[],
inorderMap: Map<number, number>,
i: number,
l: number,
r: number
): TreeNode | null {
// 子树区间为空时终止
if (r - l < 0) return null;
// 初始化根节点
const root: TreeNode = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
const m = inorderMap.get(preorder[i]);
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
function buildTree(preorder: number[], inorder: number[]): TreeNode | null {
// 初始化哈希表,存储 inorder 元素到索引的映射
let inorderMap = new Map<number, number>();
for (let i = 0; i < inorder.length; i++) {
inorderMap.set(inorder[i], i);
}
const root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
return root;
}
build_tree.dart/* 构建二叉树:分治 */
TreeNode? dfs(
List<int> preorder,
Map<int, int> inorderMap,
int i,
int l,
int r,
) {
// 子树区间为空时终止
if (r - l < 0) {
return null;
}
// 初始化根节点
TreeNode? root = TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = inorderMap[preorder[i]]!;
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode? buildTree(List<int> preorder, List<int> inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
Map<int, int> inorderMap = {};
for (int i = 0; i < inorder.length; i++) {
inorderMap[inorder[i]] = i;
}
TreeNode? root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
return root;
}
build_tree.rs/* 构建二叉树:分治 */
fn dfs(
preorder: &[i32],
inorder_map: &HashMap<i32, i32>,
i: i32,
l: i32,
r: i32,
) -> Option<Rc<RefCell<TreeNode>>> {
// 子树区间为空时终止
if r - l < 0 {
return None;
}
// 初始化根节点
let root = TreeNode::new(preorder[i as usize]);
// 查询 m ,从而划分左右子树
let m = inorder_map.get(&preorder[i as usize]).unwrap();
// 子问题:构建左子树
root.borrow_mut().left = dfs(preorder, inorder_map, i + 1, l, m - 1);
// 子问题:构建右子树
root.borrow_mut().right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r);
// 返回根节点
Some(root)
}
/* 构建二叉树 */
fn build_tree(preorder: &[i32], inorder: &[i32]) -> Option<Rc<RefCell<TreeNode>>> {
// 初始化哈希表,存储 inorder 元素到索引的映射
let mut inorder_map: HashMap<i32, i32> = HashMap::new();
for i in 0..inorder.len() {
inorder_map.insert(inorder[i], i as i32);
}
let root = dfs(preorder, &inorder_map, 0, 0, inorder.len() as i32 - 1);
root
}
build_tree.c/* 构建二叉树:分治 */
TreeNode *dfs(int *preorder, int *inorderMap, int i, int l, int r, int size) {
// 子树区间为空时终止
if (r - l < 0)
return NULL;
// 初始化根节点
TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode));
root->val = preorder[i];
root->left = NULL;
root->right = NULL;
// 查询 m ,从而划分左右子树
int m = inorderMap[preorder[i]];
// 子问题:构建左子树
root->left = dfs(preorder, inorderMap, i + 1, l, m - 1, size);
// 子问题:构建右子树
root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r, size);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode *buildTree(int *preorder, int preorderSize, int *inorder, int inorderSize) {
// 初始化哈希表,存储 inorder 元素到索引的映射
int *inorderMap = (int *)malloc(sizeof(int) * MAX_SIZE);
for (int i = 0; i < inorderSize; i++) {
inorderMap[inorder[i]] = i;
}
TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorderSize - 1, inorderSize);
free(inorderMap);
return root;
}
build_tree.kt/* 构建二叉树:分治 */
fun dfs(
preorder: IntArray,
inorderMap: Map<Int?, Int?>,
i: Int,
l: Int,
r: Int
): TreeNode? {
// 子树区间为空时终止
if (r - l < 0) return null
// 初始化根节点
val root = TreeNode(preorder[i])
// 查询 m ,从而划分左右子树
val m = inorderMap[preorder[i]]!!
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1)
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r)
// 返回根节点
return root
}
/* 构建二叉树 */
fun buildTree(preorder: IntArray, inorder: IntArray): TreeNode? {
// 初始化哈希表,存储 inorder 元素到索引的映射
val inorderMap = HashMap<Int?, Int?>()
for (i in inorder.indices) {
inorderMap[inorder[i]] = i
}
val root = dfs(preorder, inorderMap, 0, 0, inorder.size - 1)
return root
}
build_tree.rb### 构建二叉树:分治 ###
def dfs(preorder, inorder_map, i, l, r)
# 子树区间为空时终止
return if r - l < 0
# 初始化根节点
root = TreeNode.new(preorder[i])
# 查询 m ,从而划分左右子树
m = inorder_map[preorder[i]]
# 子问题:构建左子树
root.left = dfs(preorder, inorder_map, i + 1, l, m - 1)
# 子问题:构建右子树
root.right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r)
# 返回根节点
root
end
### 构建二叉树 ###
def build_tree(preorder, inorder)
# 初始化哈希表,存储 inorder 元素到索引的映射
inorder_map = {}
inorder.each_with_index { |val, i| inorder_map[val] = i }
dfs(preorder, inorder_map, 0, 0, inorder.length - 1)
end
build_tree.zig[class]{}-[func]{dfs}
[class]{}-[func]{buildTree}
图 12-8 展示了构建二叉树的递归过程,各个节点是在向下“递”的过程中建立的,而各条边(引用)是在向上“归”的过程中建立的。
图 12-8 构建二叉树的递归过程
每个递归函数内的前序遍历 preorder
和中序遍历 inorder
的划分结果如图 12-9 所示。
图 12-9 每个递归函数中的划分结果
设树的节点数量为 \(n\) ,初始化每一个节点(执行一个递归函数 dfs()
)使用 \(O(1)\) 时间。因此总体时间复杂度为 \(O(n)\) 。
哈希表存储 inorder
元素到索引的映射,空间复杂度为 \(O(n)\) 。在最差情况下,即二叉树退化为链表时,递归深度达到 \(n\) ,使用 \(O(n)\) 的栈帧空间。因此总体空间复杂度为 \(O(n)\) 。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论