返回介绍

solution / 0600-0699 / 0674.Longest Continuous Increasing Subsequence / README

发布于 2024-06-17 01:03:35 字数 6509 浏览 0 评论 0 收藏 0

674. 最长连续递增序列

English Version

题目描述

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 lrl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

 

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

 

提示:

  • 1 <= nums.length <= 104
  • -109 <= nums[i] <= 109

解法

方法一:一次遍历

我们可以遍历数组 $nums$,用变量 $cnt$ 记录当前连续递增序列的长度。初始时 $cnt = 1$。

然后,我们从下标 $i = 1$ 开始,向右遍历数组 $nums$。每次遍历时,如果 $nums[i - 1] < nums[i]$,则说明当前元素可以加入到连续递增序列中,因此令 $cnt = cnt + 1$,然后更新答案为 $ans = \max(ans, cnt)$。否则,说明当前元素无法加入到连续递增序列中,因此令 $cnt = 1$。

遍历结束后,返回答案 $ans$ 即可。

时间复杂度 $O(n)$,其中 $n$ 是数组 $nums$ 的长度。空间复杂度 $O(1)$。

class Solution:
  def findLengthOfLCIS(self, nums: List[int]) -> int:
    ans = cnt = 1
    for i, x in enumerate(nums[1:]):
      if nums[i] < x:
        cnt += 1
        ans = max(ans, cnt)
      else:
        cnt = 1
    return ans
class Solution {
  public int findLengthOfLCIS(int[] nums) {
    int ans = 1;
    for (int i = 1, cnt = 1; i < nums.length; ++i) {
      if (nums[i - 1] < nums[i]) {
        ans = Math.max(ans, ++cnt);
      } else {
        cnt = 1;
      }
    }
    return ans;
  }
}
class Solution {
public:
  int findLengthOfLCIS(vector<int>& nums) {
    int ans = 1;
    for (int i = 1, cnt = 1; i < nums.size(); ++i) {
      if (nums[i - 1] < nums[i]) {
        ans = max(ans, ++cnt);
      } else {
        cnt = 1;
      }
    }
    return ans;
  }
};
func findLengthOfLCIS(nums []int) int {
  ans, cnt := 1, 1
  for i, x := range nums[1:] {
    if nums[i] < x {
      cnt++
      ans = max(ans, cnt)
    } else {
      cnt = 1
    }
  }
  return ans
}
function findLengthOfLCIS(nums: number[]): number {
  let [ans, cnt] = [1, 1];
  for (let i = 1; i < nums.length; ++i) {
    if (nums[i - 1] < nums[i]) {
      ans = Math.max(ans, ++cnt);
    } else {
      cnt = 1;
    }
  }
  return ans;
}
impl Solution {
  pub fn find_length_of_lcis(nums: Vec<i32>) -> i32 {
    let mut ans = 1;
    let mut cnt = 1;
    for i in 1..nums.len() {
      if nums[i - 1] < nums[i] {
        ans = ans.max(cnt + 1);
        cnt += 1;
      } else {
        cnt = 1;
      }
    }
    ans
  }
}
class Solution {
  /**
   * @param Integer[] $nums
   * @return Integer
   */
  function findLengthOfLCIS($nums) {
    $ans = 1;
    $cnt = 1;
    for ($i = 1; $i < count($nums); ++$i) {
      if ($nums[$i - 1] < $nums[$i]) {
        $ans = max($ans, ++$cnt);
      } else {
        $cnt = 1;
      }
    }
    return $ans;
  }
}

方法二:双指针

我们也可以用双指针 $i$ 和 $j$ 找到每一段连续递增序列,找出最长的连续递增序列的长度作为答案。

时间复杂度 $O(n)$,其中 $n$ 是数组 $nums$ 的长度。空间复杂度 $O(1)$。

class Solution:
  def findLengthOfLCIS(self, nums: List[int]) -> int:
    ans, n = 1, len(nums)
    i = 0
    while i < n:
      j = i + 1
      while j < n and nums[j - 1] < nums[j]:
        j += 1
      ans = max(ans, j - i)
      i = j
    return ans
class Solution {
  public int findLengthOfLCIS(int[] nums) {
    int ans = 1;
    int n = nums.length;
    for (int i = 0; i < n;) {
      int j = i + 1;
      while (j < n && nums[j - 1] < nums[j]) {
        ++j;
      }
      ans = Math.max(ans, j - i);
      i = j;
    }
    return ans;
  }
}
class Solution {
public:
  int findLengthOfLCIS(vector<int>& nums) {
    int ans = 1;
    int n = nums.size();
    for (int i = 0; i < n;) {
      int j = i + 1;
      while (j < n && nums[j - 1] < nums[j]) {
        ++j;
      }
      ans = max(ans, j - i);
      i = j;
    }
    return ans;
  }
};
func findLengthOfLCIS(nums []int) int {
  ans := 1
  n := len(nums)
  for i := 0; i < n; {
    j := i + 1
    for j < n && nums[j-1] < nums[j] {
      j++
    }
    ans = max(ans, j-i)
    i = j
  }
  return ans
}
function findLengthOfLCIS(nums: number[]): number {
  let ans = 1;
  const n = nums.length;
  for (let i = 0; i < n; ) {
    let j = i + 1;
    while (j < n && nums[j - 1] < nums[j]) {
      ++j;
    }
    ans = Math.max(ans, j - i);
    i = j;
  }
  return ans;
}
impl Solution {
  pub fn find_length_of_lcis(nums: Vec<i32>) -> i32 {
    let mut ans = 1;
    let n = nums.len();
    let mut i = 0;
    while i < n {
      let mut j = i + 1;
      while j < n && nums[j - 1] < nums[j] {
        j += 1;
      }
      ans = ans.max(j - i);
      i = j;
    }
    ans as i32
  }
}
class Solution {
  /**
   * @param Integer[] $nums
   * @return Integer
   */
  function findLengthOfLCIS($nums) {
    $ans = 1;
    $n = count($nums);
    $i = 0;
    while ($i < $n) {
      $j = $i + 1;
      while ($j < $n && $nums[$j - 1] < $nums[$j]) {
        $j++;
      }
      $ans = max($ans, $j - $i);
      $i = $j;
    }
    return $ans;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文