- 概览
- 安装
- 教程
- 算法接口文档
- 简易高效的并行接口
- APIS
- FREQUENTLY ASKED QUESTIONS
- EVOKIT
- 其他
- parl.algorithms.paddle.policy_gradient
- parl.algorithms.paddle.dqn
- parl.algorithms.paddle.ddpg
- parl.algorithms.paddle.ddqn
- parl.algorithms.paddle.oac
- parl.algorithms.paddle.a2c
- parl.algorithms.paddle.qmix
- parl.algorithms.paddle.td3
- parl.algorithms.paddle.sac
- parl.algorithms.paddle.ppo
- parl.algorithms.paddle.maddpg
- parl.core.paddle.model
- parl.core.paddle.algorithm
- parl.remote.remote_decorator
- parl.core.paddle.agent
- parl.remote.client
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
parl.core.paddle.agent
parl.core.paddle.agent 源代码
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle from paddle.static import InputSpec from parl.core.agent_base import AgentBase from parl.core.paddle.algorithm import Algorithm __all__ = ['Agent'] [文档]class Agent(AgentBase): """ | `alias`: ``parl.Agent`` | `alias`: ``parl.core.paddle.agent.Agent`` | Agent is one of the three basic classes of PARL. | It is responsible for interacting with the environment and collecting data for training the policy. | To implement a customized ``Agent``, users can: .. code-block:: python import parl class MyAgent(parl.Agent): def __init__(self, algorithm, act_dim): super(MyAgent, self).__init__(algorithm) self.act_dim = act_dim Attributes: alg (parl.algorithm): algorithm of this agent. Public Functions: - ``sample``: return a noisy action to perform exploration according to the policy. - ``predict``: return an action given current observation. - ``learn``: update the parameters of self.alg using the `learn_program` defined in `build_program()`. - ``save``: save parameters of the ``agent`` to a given path. - ``restore``: restore previous saved parameters from a given path. - ``train``: set the agent in training mode. - ``eval``: set the agent in evaluation mode. Todo: - allow users to get parameters of a specified model by specifying the model's name in ``get_weights()``. """ [文档] def __init__(self, algorithm): """ Args: algorithm (parl.Algorithm): an instance of `parl.Algorithm`. This algorithm is then passed to `self.alg`. """ assert isinstance(algorithm, Algorithm) super(Agent, self).__init__(algorithm) # agent mode (bool): True is in training mode, False is in evaluation mode. self.training = True [文档] def learn(self, *args, **kwargs): """The training interface for ``Agent``. """ raise NotImplementedError [文档] def predict(self, *args, **kwargs): """Predict an action when given the observation of the environment. """ raise NotImplementedError [文档] def sample(self, *args, **kwargs): """Return an action with noise when given the observation of the environment. In general, this function is used in train process as noise is added to the action to preform exploration. """ raise NotImplementedError [文档] def save(self, save_path, model=None): """Save parameters. Args: save_path(str): where to save the parameters. model(parl.Model): model that describes the neural network structure. If None, will use self.alg.model. Example: .. code-block:: python agent = AtariAgent() agent.save('./model_dir') """ if model is None: model = self.alg.model paddle.save(model.state_dict(), save_path) [文档] def save_inference_model(self, save_path, input_shape_list, input_dtype_list, model=None): """ Saves input Layer or function as ``paddle.jit.TranslatedLayer`` format model, which can be used for inference. Args: save_path(str): where to save the inference_model. model(parl.Model): model that describes the policy network structure. If None, will use self.alg.model. input_shape_list(list): shape of all inputs of the saved model's forward method. input_dtype_list(list): dtype of all inputs of the saved model's forward method. Example: .. code-block:: python agent = AtariAgent() agent.save_inference_model('./inference_model_dir', [[None, 128]], ['float32']) Example with actor-critic: .. code-block:: python agent = AtariAgent() agent.save_inference_model('./inference_ac_model_dir', [[None, 128]], ['float32'], agent.alg.model.actor_model) """ if model is None: model = self.alg.model assert callable( getattr(model, 'forward', None)), "forward should be a function in model class." assert model.forward.__func__ is not super( model.__class__, model).forward.__func__, "model needs to implement forward method." assert isinstance( input_shape_list, list ), 'Type of input_shape_list in save_inference_model() should be list, but received {}'.format( type(input_shape_list)) assert isinstance( input_dtype_list, list ), 'Type of input_dtype_list in save_inference_model() should be list, but received {}'.format( type(input_dtype_list)) assert len(input_shape_list) == len(input_dtype_list) input_spec = [] for input_shape, input_type in zip(input_shape_list, input_dtype_list): input_spec.append(InputSpec(shape=input_shape, dtype=input_type)) paddle.jit.save(model, save_path, input_spec) [文档] def restore(self, save_path, model=None): """Restore previously saved parameters. This method requires a program that describes the network structure. The save_path argument is typically a value previously passed to ``save_params()``. Args: save_path(str): path where parameters were previously saved. model(parl.Model): model that describes the neural network structure. If None, will use self.alg.model. Raises: ValueError: if program is None and self.learn_program does not exist. Example: .. code-block:: python agent = AtariAgent() agent.save('./model_dir') agent.restore('./model_dir') """ if model is None: model = self.alg.model param_dict = paddle.load(save_path) model.set_state_dict(param_dict) [文档] def train(self): """Sets the agent in training mode, which is the default setting. Model of agent will be affected if it has some modules (e.g. Dropout, BatchNorm) that behave differently in train/evaluation mode. Example: .. code-block:: python agent.train() # default setting assert (agent.training is True) agent.eval() assert (agent.training is False) """ self.alg.model.train() self.training = True [文档] def eval(self): """Sets the agent in evaluation mode. """ self.alg.model.eval() self.training = False
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论