返回介绍

solution / 2900-2999 / 2939.Maximum Xor Product / README

发布于 2024-06-17 01:02:58 字数 5089 浏览 0 评论 0 收藏 0

2939. 最大异或乘积

English Version

题目描述

给你三个整数 a ,b 和 n ,请你返回 (a XOR x) * (b XOR x) 的 最大值 且 x 需要满足 0 <= x < 2n

由于答案可能会很大,返回它对 109 + 7 取余 后的结果。

注意XOR 是按位异或操作。

 

示例 1:

输入:a = 12, b = 5, n = 4
输出:98
解释:当 x = 2 时,(a XOR x) = 14 且 (b XOR x) = 7 。所以,(a XOR x) * (b XOR x) = 98 。
98 是所有满足 0 <= x < 2n 中 (a XOR x) * (b XOR x) 的最大值。

示例 2:

输入:a = 6, b = 7 , n = 5
输出:930
解释:当 x = 25 时,(a XOR x) = 31 且 (b XOR x) = 30 。所以,(a XOR x) * (b XOR x) = 930 。
930 是所有满足 0 <= x < 2n 中 (a XOR x) * (b XOR x) 的最大值。

示例 3:

输入:a = 1, b = 6, n = 3
输出:12
解释: 当 x = 5 时,(a XOR x) = 4 且 (b XOR x) = 3 。所以,(a XOR x) * (b XOR x) = 12 。
12 是所有满足 0 <= x < 2n 中 (a XOR x) * (b XOR x) 的最大值。

 

提示:

  • 0 <= a, b < 250
  • 0 <= n <= 50

解法

方法一:贪心 + 位运算

根据题目描述,我们可以给 $a$ 和 $b$ 在二进制下 $[0..n)$ 位上同时分配一个数字,最终使得 $a$ 和 $b$ 的乘积最大。

因此,我们首先提取 $a$ 和 $b$ 高于 $n$ 位的部分,分别记为 $ax$ 和 $bx$。

接下来,从大到小考虑 $[0..n)$ 位上的每一位,我们将 $a$ 和 $b$ 的当前位分别记为 $x$ 和 $y$。

如果 $x = y$,那么我们可以将 $ax$ 和 $bx$ 的当前位同时置为 $1$,因此,我们更新 $ax = ax \mid 1 << i$ 和 $bx = bx \mid 1 << i$。否则,如果 $ax \lt bx$,要使得最终的乘积最大,我们应该让 $ax$ 的当前位置为 $1$,否则我们可以将 $bx$ 的当前位置为 $1$。

最后,我们返回 $ax \times bx \bmod (10^9 + 7)$ 即为答案。

时间复杂度 $O(n)$,其中 $n$ 为题目给定的整数。空间复杂度 $O(1)$。

class Solution:
  def maximumXorProduct(self, a: int, b: int, n: int) -> int:
    mod = 10**9 + 7
    ax, bx = (a >> n) << n, (b >> n) << n
    for i in range(n - 1, -1, -1):
      x = a >> i & 1
      y = b >> i & 1
      if x == y:
        ax |= 1 << i
        bx |= 1 << i
      elif ax > bx:
        bx |= 1 << i
      else:
        ax |= 1 << i
    return ax * bx % mod
class Solution {
  public int maximumXorProduct(long a, long b, int n) {
    final int mod = (int) 1e9 + 7;
    long ax = (a >> n) << n;
    long bx = (b >> n) << n;
    for (int i = n - 1; i >= 0; --i) {
      long x = a >> i & 1;
      long y = b >> i & 1;
      if (x == y) {
        ax |= 1L << i;
        bx |= 1L << i;
      } else if (ax < bx) {
        ax |= 1L << i;
      } else {
        bx |= 1L << i;
      }
    }
    ax %= mod;
    bx %= mod;
    return (int) (ax * bx % mod);
  }
}
class Solution {
public:
  int maximumXorProduct(long long a, long long b, int n) {
    const int mod = 1e9 + 7;
    long long ax = (a >> n) << n, bx = (b >> n) << n;
    for (int i = n - 1; ~i; --i) {
      int x = a >> i & 1, y = b >> i & 1;
      if (x == y) {
        ax |= 1LL << i;
        bx |= 1LL << i;
      } else if (ax < bx) {
        ax |= 1LL << i;
      } else {
        bx |= 1LL << i;
      }
    }
    ax %= mod;
    bx %= mod;
    return ax * bx % mod;
  }
};
func maximumXorProduct(a int64, b int64, n int) int {
  const mod int64 = 1e9 + 7
  ax := (a >> n) << n
  bx := (b >> n) << n
  for i := n - 1; i >= 0; i-- {
    x, y := (a>>i)&1, (b>>i)&1
    if x == y {
      ax |= 1 << i
      bx |= 1 << i
    } else if ax < bx {
      ax |= 1 << i
    } else {
      bx |= 1 << i
    }
  }
  ax %= mod
  bx %= mod
  return int(ax * bx % mod)
}
function maximumXorProduct(a: number, b: number, n: number): number {
  const mod = BigInt(1e9 + 7);
  let ax = (BigInt(a) >> BigInt(n)) << BigInt(n);
  let bx = (BigInt(b) >> BigInt(n)) << BigInt(n);
  for (let i = BigInt(n - 1); ~i; --i) {
    const x = (BigInt(a) >> i) & 1n;
    const y = (BigInt(b) >> i) & 1n;
    if (x === y) {
      ax |= 1n << i;
      bx |= 1n << i;
    } else if (ax < bx) {
      ax |= 1n << i;
    } else {
      bx |= 1n << i;
    }
  }
  ax %= mod;
  bx %= mod;
  return Number((ax * bx) % mod);
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文