返回介绍

solution / 1100-1199 / 1186.Maximum Subarray Sum with One Deletion / README

发布于 2024-06-17 01:03:22 字数 4254 浏览 0 评论 0 收藏 0

1186. 删除一次得到子数组最大和

English Version

题目描述

给你一个整数数组,返回它的某个 非空 子数组(连续元素)在执行一次可选的删除操作后,所能得到的最大元素总和。换句话说,你可以从原数组中选出一个子数组,并可以决定要不要从中删除一个元素(只能删一次哦),(删除后)子数组中至少应当有一个元素,然后该子数组(剩下)的元素总和是所有子数组之中最大的。

注意,删除一个元素后,子数组 不能为空

 

示例 1:

输入:arr = [1,-2,0,3]
输出:4
解释:我们可以选出 [1, -2, 0, 3],然后删掉 -2,这样得到 [1, 0, 3],和最大。

示例 2:

输入:arr = [1,-2,-2,3]
输出:3
解释:我们直接选出 [3],这就是最大和。

示例 3:

输入:arr = [-1,-1,-1,-1]
输出:-1
解释:最后得到的子数组不能为空,所以我们不能选择 [-1] 并从中删去 -1 来得到 0。
   我们应该直接选择 [-1],或者选择 [-1, -1] 再从中删去一个 -1。

 

提示:

  • 1 <= arr.length <= 105
  • -104 <= arr[i] <= 104

解法

方法一:预处理 + 枚举

我们可以先预处理出数组 $arr$ 以每个元素结尾和开头的最大子数组和,分别存入数组 $left$ 和 $right$ 中。

如果我们不删除任何元素,那么最大子数组和就是 $left[i]$ 或 $right[i]$ 中的最大值;如果我们删除一个元素,我们可以枚举 $[1..n-2]$ 中的每个位置 $i$,计算 $left[i-1] + right[i+1]$ 的值,取最大值即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $arr$ 的长度。

class Solution:
  def maximumSum(self, arr: List[int]) -> int:
    n = len(arr)
    left = [0] * n
    right = [0] * n
    s = 0
    for i, x in enumerate(arr):
      s = max(s, 0) + x
      left[i] = s
    s = 0
    for i in range(n - 1, -1, -1):
      s = max(s, 0) + arr[i]
      right[i] = s
    ans = max(left)
    for i in range(1, n - 1):
      ans = max(ans, left[i - 1] + right[i + 1])
    return ans
class Solution {
  public int maximumSum(int[] arr) {
    int n = arr.length;
    int[] left = new int[n];
    int[] right = new int[n];
    int ans = -(1 << 30);
    for (int i = 0, s = 0; i < n; ++i) {
      s = Math.max(s, 0) + arr[i];
      left[i] = s;
      ans = Math.max(ans, left[i]);
    }
    for (int i = n - 1, s = 0; i >= 0; --i) {
      s = Math.max(s, 0) + arr[i];
      right[i] = s;
    }
    for (int i = 1; i < n - 1; ++i) {
      ans = Math.max(ans, left[i - 1] + right[i + 1]);
    }
    return ans;
  }
}
class Solution {
public:
  int maximumSum(vector<int>& arr) {
    int n = arr.size();
    int left[n];
    int right[n];
    for (int i = 0, s = 0; i < n; ++i) {
      s = max(s, 0) + arr[i];
      left[i] = s;
    }
    for (int i = n - 1, s = 0; ~i; --i) {
      s = max(s, 0) + arr[i];
      right[i] = s;
    }
    int ans = *max_element(left, left + n);
    for (int i = 1; i < n - 1; ++i) {
      ans = max(ans, left[i - 1] + right[i + 1]);
    }
    return ans;
  }
};
func maximumSum(arr []int) int {
  n := len(arr)
  left := make([]int, n)
  right := make([]int, n)
  for i, s := 0, 0; i < n; i++ {
    s = max(s, 0) + arr[i]
    left[i] = s
  }
  for i, s := n-1, 0; i >= 0; i-- {
    s = max(s, 0) + arr[i]
    right[i] = s
  }
  ans := slices.Max(left)
  for i := 1; i < n-1; i++ {
    ans = max(ans, left[i-1]+right[i+1])
  }
  return ans
}
function maximumSum(arr: number[]): number {
  const n = arr.length;
  const left: number[] = Array(n).fill(0);
  const right: number[] = Array(n).fill(0);
  for (let i = 0, s = 0; i < n; ++i) {
    s = Math.max(s, 0) + arr[i];
    left[i] = s;
  }
  for (let i = n - 1, s = 0; i >= 0; --i) {
    s = Math.max(s, 0) + arr[i];
    right[i] = s;
  }
  let ans = Math.max(...left);
  for (let i = 1; i < n - 1; ++i) {
    ans = Math.max(ans, left[i - 1] + right[i + 1]);
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文